
4
Classical linear regression model assumptions

and diagnostic tests

Learning Outcomes

In this chapter, you will learn how to

● Describe the steps involved in testing regression residuals for
heteroscedasticity and autocorrelation

● Explain the impact of heteroscedasticity or autocorrelation on
the optimality of OLS parameter and standard error estimation

● Distinguish between the Durbin--Watson and Breusch--Godfrey
tests for autocorrelation

● Highlight the advantages and disadvantages of dynamic models

● Test for whether the functional form of the model employed is
appropriate

● Determine whether the residual distribution from a regression
differs significantly from normality

● Investigate whether the model parameters are stable

● Appraise different philosophies of how to build an econometric
model

● Conduct diagnostic tests in EViews

4.1 Introduction

Recall that five assumptions were made relating to the classical linear re-

gression model (CLRM). These were required to show that the estimation

technique, ordinary least squares (OLS), had a number of desirable proper-

ties, and also so that hypothesis tests regarding the coefficient estimates

could validly be conducted. Specifically, it was assumed that:

(1) E(ut ) = 0

(2) var(ut ) = σ 2 < ∞

(3) cov(ui ,u j ) = 0
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(4) cov(ut ,xt ) = 0

(5) ut ∼ N(0, σ 2)

These assumptions will now be studied further, in particular looking at

the following:

● How can violations of the assumptions be detected?

● What are the most likely causes of the violations in practice?

● What are the consequences for the model if an assumption is violated

but this fact is ignored and the researcher proceeds regardless?

The answer to the last of these questions is that, in general, the model

could encounter any combination of three problems:

● the coefficient estimates (β̂s) are wrong

● the associated standard errors are wrong

● the distributions that were assumed for the test statistics are inappro-

priate.

A pragmatic approach to ‘solving’ problems associated with the use of

models where one or more of the assumptions is not supported by the

data will then be adopted. Such solutions usually operate such that:

● the assumptions are no longer violated, or

● the problems are side-stepped, so that alternative techniques are used

which are still valid.

4.2 Statistical distributions for diagnostic tests

The text below discusses various regression diagnostic (misspecification)

tests that are based on the calculation of a test statistic. These tests can

be constructed in several ways, and the precise approach to constructing

the test statistic will determine the distribution that the test statistic is

assumed to follow. Two particular approaches are in common usage and

their results are given by the statistical packages: the LM test and the Wald

test. Further details concerning these procedures are given in chapter 8.

For now, all that readers require to know is that LM test statistics in the

context of the diagnostic tests presented here follow a χ2 distribution

with degrees of freedom equal to the number of restrictions placed

on the model, and denoted m. The Wald version of the test follows an

F-distribution with (m, T − k) degrees of freedom. Asymptotically, these

two tests are equivalent, although their results will differ somewhat

in small samples. They are equivalent as the sample size increases

towards infinity since there is a direct relationship between the χ2- and
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F-distributions. Taking a χ2 variate and dividing by its degrees of freedom

asymptotically gives an F -variate

χ2(m)

m
→ F(m, T − k) as T → ∞

Computer packages typically present results using both approaches, al-

though only one of the two will be illustrated for each test below. They will

usually give the same conclusion, although if they do not, the F-version

is usually considered preferable for finite samples, since it is sensitive to

sample size (one of its degrees of freedom parameters depends on sample

size) in a way that the χ2-version is not.

4.3 Assumption 1: E(ut ) = 0

The first assumption required is that the average value of the errors is

zero. In fact, if a constant term is included in the regression equation, this

assumption will never be violated. But what if financial theory suggests

that, for a particular application, there should be no intercept so that

the regression line is forced through the origin? If the regression did

not include an intercept, and the average value of the errors was non-

zero, several undesirable consequences could arise. First, R2, defined as

ESS/TSS can be negative, implying that the sample average, ȳ, ‘explains’

more of the variation in y than the explanatory variables. Second, and

more fundamentally, a regression with no intercept parameter could lead

to potentially severe biases in the slope coefficient estimates. To see this,

consider figure 4.1.
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Effect of no

intercept on a

regression line
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The solid line shows the regression estimated including a constant term,

while the dotted line shows the effect of suppressing (i.e. setting to zero)

the constant term. The effect is that the estimated line in this case is

forced through the origin, so that the estimate of the slope coefficient

(β̂) is biased. Additionally, R2 and R̄2 are usually meaningless in such a

context. This arises since the mean value of the dependent variable, ȳ,

will not be equal to the mean of the fitted values from the model, i.e. the

mean of ŷ if there is no constant in the regression.

4.4 Assumption 2: var(ut ) = σ2 < ∞

It has been assumed thus far that the variance of the errors is con-

stant, σ 2 -- this is known as the assumption of homoscedasticity. If the er-

rors do not have a constant variance, they are said to be heteroscedastic.

To consider one illustration of heteroscedasticity, suppose that a regres-

sion had been estimated and the residuals, ût , have been calculated and

then plotted against one of the explanatory variables, x2t , as shown in

figure 4.2.

It is clearly evident that the errors in figure 4.2 are heteroscedastic --

that is, although their mean value is roughly constant, their variance is

increasing systematically with x2t .
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Figure 4.2

Graphical

illustration of

heteroscedasticity
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4.4.1 Detection of heteroscedasticity

How can one tell whether the errors are heteroscedastic or not? It is pos-

sible to use a graphical method as above, but unfortunately one rarely

knows the cause or the form of the heteroscedasticity, so that a plot is

likely to reveal nothing. For example, if the variance of the errors was

an increasing function of x3t , and the researcher had plotted the residu-

als against x2t , he would be unlikely to see any pattern and would thus

wrongly conclude that the errors had constant variance. It is also possible

that the variance of the errors changes over time rather than systemati-

cally with one of the explanatory variables; this phenomenon is known

as ‘ARCH’ and is described in chapter 8.

Fortunately, there are a number of formal statistical tests for het-

eroscedasticity, and one of the simplest such methods is the Goldfeld--

Quandt (1965) test. Their approach is based on splitting the total sample

of length T into two sub-samples of length T1 and T2. The regression model

is estimated on each sub-sample and the two residual variances are cal-

culated as s2
1 = û′

1û1/(T1 − k) and s2
2 = û′

2û2/(T2 − k) respectively. The null

hypothesis is that the variances of the disturbances are equal, which can

be written H0 : σ 2
1 = σ 2

2 , against a two-sided alternative. The test statistic,

denoted GQ, is simply the ratio of the two residual variances where the

larger of the two variances must be placed in the numerator (i.e. s2
1 is the

higher sample variance for the sample with length T1, even if it comes

from the second sub-sample):

GQ =
s2

1

s2
2

(4.1)

The test statistic is distributed as an F(T1 − k, T2 − k) under the null hy-

pothesis, and the null of a constant variance is rejected if the test statistic

exceeds the critical value.

The GQ test is simple to construct but its conclusions may be contin-

gent upon a particular, and probably arbitrary, choice of where to split

the sample. Clearly, the test is likely to be more powerful when this choice

is made on theoretical grounds -- for example, before and after a major

structural event. Suppose that it is thought that the variance of the dis-

turbances is related to some observable variable zt (which may or may not

be one of the regressors). A better way to perform the test would be to

order the sample according to values of zt (rather than through time) and

then to split the re-ordered sample into T1 and T2.

An alternative method that is sometimes used to sharpen the inferences

from the test and to increase its power is to omit some of the observations
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from the centre of the sample so as to introduce a degree of separation

between the two sub-samples.

A further popular test is White’s (1980) general test for heteroscedas-

ticity. The test is particularly useful because it makes few assumptions

about the likely form of the heteroscedasticity. The test is carried out as

in box 4.1.

Box 4.1 Conducting White’s test

(1) Assume that the regression model estimated is of the standard linear form, e.g.

yt = β1 + β2x2t + β3x3t + ut (4.2)

To test var(ut ) = σ 2, estimate the model above, obtaining the residuals, ût

(2) Then run the auxiliary regression

û2
t = α1 + α2x2t + α3x3t + α4x2

2t + α5x2
3t + α6x2t x3t + vt (4.3)

where vt is a normally distributed disturbance term independent of ut . This

regression is of the squared residuals on a constant, the original explanatory

variables, the squares of the explanatory variables and their cross-products. To see

why the squared residuals are the quantity of interest, recall that for a random

variable ut , the variance can be written

var(ut ) = E[(ut − E(ut ))
2] (4.4)

Under the assumption that E(ut ) = 0, the second part of the RHS of this

expression disappears:

var(ut ) = E

[

u2
t

]

(4.5)

Once again, it is not possible to know the squares of the population disturbances,

u2
t , so their sample counterparts, the squared residuals, are used instead.

The reason that the auxiliary regression takes this form is that it is desirable to

investigate whether the variance of the residuals (embodied in û2
t ) varies

systematically with any known variables relevant to the model. Relevant variables

will include the original explanatory variables, their squared values and their

cross-products. Note also that this regression should include a constant term,

even if the original regression did not. This is as a result of the fact that û2
t will

always have a non-zero mean, even if ût has a zero mean.

(3) Given the auxiliary regression, as stated above, the test can be conducted using

two different approaches. First, it is possible to use the F-test framework described

in chapter 3. This would involve estimating (4.3) as the unrestricted regression and

then running a restricted regression of û2
t on a constant only. The RSS from each

specification would then be used as inputs to the standard F-test formula.

With many diagnostic tests, an alternative approach can be adopted that does

not require the estimation of a second (restricted) regression. This approach is

known as a Lagrange Multiplier (LM) test, which centres around the value of R2 for

the auxiliary regression. If one or more coefficients in (4.3) is statistically

significant, the value of R2 for that equation will be relatively high, while if none of

the variables is significant, R2 will be relatively low. The LM test would thus operate



Classical linear regression model assumptions and diagnostic tests 135

by obtaining R2 from the auxiliary regression and multiplying it by the number of

observations, T . It can be shown that

TR2 ∼ χ2(m)

where m is the number of regressors in the auxiliary regression (excluding the

constant term), equivalent to the number of restrictions that would have to be

placed under the F-test approach.

(4) The test is one of the joint null hypothesis that α2 = 0, and α3 = 0, and α4 = 0,

and α5 = 0, and α6 = 0. For the LM test, if the χ2-test statistic from step 3 is

greater than the corresponding value from the statistical table then reject the null

hypothesis that the errors are homoscedastic.

Example 4.1

Suppose that the model (4.2) above has been estimated using 120 obser-

vations, and the R2 from the auxiliary regression (4.3) is 0.234. The test

statistic will be given by TR2 = 120 × 0.234 = 28.8, which will follow a

χ2(5) under the null hypothesis. The 5% critical value from the χ2 table is

11.07. The test statistic is therefore more than the critical value and hence

the null hypothesis is rejected. It would be concluded that there is signif-

icant evidence of heteroscedasticity, so that it would not be plausible to

assume that the variance of the errors is constant in this case.

4.4.2 Consequences of using OLS in the presence of heteroscedasticity

What happens if the errors are heteroscedastic, but this fact is ignored

and the researcher proceeds with estimation and inference? In this case,

OLS estimators will still give unbiased (and also consistent) coefficient

estimates, but they are no longer BLUE -- that is, they no longer have the

minimum variance among the class of unbiased estimators. The reason

is that the error variance, σ 2, plays no part in the proof that the OLS

estimator is consistent and unbiased, but σ 2 does appear in the formulae

for the coefficient variances. If the errors are heteroscedastic, the formulae

presented for the coefficient standard errors no longer hold. For a very

accessible algebraic treatment of the consequences of heteroscedasticity,

see Hill, Griffiths and Judge (1997, pp. 217--18).

So, the upshot is that if OLS is still used in the presence of heteroscedas-

ticity, the standard errors could be wrong and hence any inferences made

could be misleading. In general, the OLS standard errors will be too

large for the intercept when the errors are heteroscedastic. The effect of

heteroscedasticity on the slope standard errors will depend on its form.

For example, if the variance of the errors is positively related to the
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square of an explanatory variable (which is often the case in practice), the

OLS standard error for the slope will be too low. On the other hand, the

OLS slope standard errors will be too big when the variance of the errors

is inversely related to an explanatory variable.

4.4.3 Dealing with heteroscedasticity

If the form (i.e. the cause) of the heteroscedasticity is known, then an alter-

native estimation method which takes this into account can be used. One

possibility is called generalised least squares (GLS). For example, suppose

that the error variance was related to zt by the expression

var(ut ) = σ 2z2
t (4.6)

All that would be required to remove the heteroscedasticity would be to

divide the regression equation through by zt

yt

zt

= β1

1

zt

+ β2

x2t

zt

+ β3

x3t

zt

+ vt (4.7)

where vt =
ut

zt

is an error term.

Now, if var(ut ) = σ 2z2
t , var(vt ) = var

(

ut

zt

)

=
var(ut )

z2
t

=
σ 2z2

t

z2
t

= σ 2 for

known z.

Therefore, the disturbances from (4.7) will be homoscedastic. Note that

this latter regression does not include a constant since β1 is multiplied by

(1/zt ). GLS can be viewed as OLS applied to transformed data that satisfy

the OLS assumptions. GLS is also known as weighted least squares (WLS),

since under GLS a weighted sum of the squared residuals is minimised,

whereas under OLS it is an unweighted sum.

However, researchers are typically unsure of the exact cause of the het-

eroscedasticity, and hence this technique is usually infeasible in practice.

Two other possible ‘solutions’ for heteroscedasticity are shown in box 4.2.

Examples of tests for heteroscedasticity in the context of the single in-

dex market model are given in Fabozzi and Francis (1980). Their results are

strongly suggestive of the presence of heteroscedasticity, and they examine

various factors that may constitute the form of the heteroscedasticity.

4.4.4 Testing for heteroscedasticity using EViews

Re-open the Microsoft Workfile that was examined in the previous chap-

ter and the regression that included all the macroeconomic explanatory

variables. First, plot the residuals by selecting View/Actual, Fitted, Residu-

als/Residual Graph. If the residuals of the regression have systematically

changing variability over the sample, that is a sign of heteroscedasticity.
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In this case, it is hard to see any clear pattern, so we need to run the

formal statistical test. To test for heteroscedasticity using White’s test,

click on the View button in the regression window and select Residual

Tests/Heteroscedasticity Tests. You will see a large number of different

tests available, including the ARCH test that will be discussed in chapter

8. For now, select the White specification. You can also select whether

to include the cross-product terms or not (i.e. each variable multiplied by

each other variable) or include only the squares of the variables in the

auxiliary regression. Uncheck the ‘Include White cross terms’ given the

relatively large number of variables in this regression and then click OK.

The results of the test will appear as follows.

Heteroskedasticity Test: White

F-statistic 0.626761 Prob. F(7,244) 0.7336
Obs∗R-squared 4.451138 Prob. Chi-Square(7) 0.7266
Scaled explained SS 21.98760 Prob. Chi-Square(7) 0.0026

Test Equation:
Dependent Variable: RESID∧2

Method: Least Squares
Date: 08/27/07 Time: 11:49
Sample: 1986M05 2007M04
Included observations: 252

Coefficient Std. Error t-Statistic Prob.

C 259.9542 65.85955 3.947099 0.0001
ERSANDP∧2 −0.130762 0.826291 −0.158252 0.8744
DPROD∧2 −7.465850 7.461475 −1.000586 0.3180

DCREDIT∧2 −1.65E-07 3.72E-07 −0.443367 0.6579
DINFLATION∧2 −137.6317 227.2283 −0.605698 0.5453

DMONEY∧2 12.79797 13.66363 0.936645 0.3499
DSPREAD∧2 −650.6570 3144.176 −0.20694 0.8362
RTERM∧2 −491.0652 418.2860 −1.173994 0.2415

R-squared 0.017663 Mean dependent var 188.4152
Adjusted R-squared −0.010519 S.D. dependent var 612.8558
S.E. of regression 616.0706 Akaike info criterion 15.71583
Sum squared resid 92608485 Schwarz criterion 15.82788
Log likelihood −1972.195 Hannan-Quinn criter. 15.76092
F-statistic 0.626761 Durbin-Watson stat 2.068099
Prob(F-statistic) 0.733596

EViews presents three different types of tests for heteroscedasticity and

then the auxiliary regression in the first results table displayed. The test

statistics give us the information we need to determine whether the

assumption of homoscedasticity is valid or not, but seeing the actual



138 Introductory Econometrics for Finance

Box 4.2 ‘Solutions’ for heteroscedasticity

(1) Transforming the variables into logs or reducing by some other measure of ‘size’. This

has the effect of re-scaling the data to ‘pull in’ extreme observations. The regression

would then be conducted upon the natural logarithms or the transformed data. Taking

logarithms also has the effect of making a previously multiplicative model, such as

the exponential regression model discussed previously (with a multiplicative error

term), into an additive one. However, logarithms of a variable cannot be taken in

situations where the variable can take on zero or negative values, for the log will not

be defined in such cases.

(2) Using heteroscedasticity-consistent standard error estimates. Most standard econo-

metrics software packages have an option (usually called something like ‘robust’)

that allows the user to employ standard error estimates that have been modified to

account for the heteroscedasticity following White (1980). The effect of using the

correction is that, if the variance of the errors is positively related to the square of

an explanatory variable, the standard errors for the slope coefficients are increased

relative to the usual OLS standard errors, which would make hypothesis testing more

‘conservative’, so that more evidence would be required against the null hypothesis

before it would be rejected.

auxiliary regression in the second table can provide useful additional in-

formation on the source of the heteroscedasticity if any is found. In this

case, both the F - and χ2 (‘LM’) versions of the test statistic give the same

conclusion that there is no evidence for the presence of heteroscedasticity,

since the p-values are considerably in excess of 0.05. The third version of

the test statistic, ‘Scaled explained SS’, which as the name suggests is based

on a normalised version of the explained sum of squares from the auxil-

iary regression, suggests in this case that there is evidence of heteroscedas-

ticity. Thus the conclusion of the test is somewhat ambiguous here.

4.4.5 Using White’s modified standard error estimates in EViews

In order to estimate the regression with heteroscedasticity-robust standard

errors in EViews, select this from the option button in the regression entry

window. In other words, close the heteroscedasticity test window and click

on the original ‘Msoftreg’ regression results, then click on the Estimate

button and in the Equation Estimation window, choose the Options tab

and screenshot 4.1 will appear.

Check the ‘Heteroskedasticity consistent coefficient variance’ box and

click OK. Comparing the results of the regression using heteroscedasticity-

robust standard errors with those using the ordinary standard er-

rors, the changes in the significances of the parameters are only

marginal. Of course, only the standard errors have changed and the

parameter estimates have remained identical to those from before. The
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Screenshot 4.1

Regression options

window

heteroscedasticity-consistent standard errors are smaller for all variables

except for money supply, resulting in the p-values being smaller. The main

changes in the conclusions reached are that the term structure variable,

which was previously significant only at the 10% level, is now significant

at 5%, and the unexpected inflation variable is now significant at the 10%

level.

4.5 Assumption 3: cov(ui , u j ) = 0 for i �= j

Assumption 3 that is made of the CLRM’s disturbance terms is that the

covariance between the error terms over time (or cross-sectionally, for

that type of data) is zero. In other words, it is assumed that the errors are

uncorrelated with one another. If the errors are not uncorrelated with

one another, it would be stated that they are ‘autocorrelated’ or that they

are ‘serially correlated’. A test of this assumption is therefore required.

Again, the population disturbances cannot be observed, so tests for

autocorrelation are conducted on the residuals, û. Before one can proceed

to see how formal tests for autocorrelation are formulated, the concept

of the lagged value of a variable needs to be defined.
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Table 4.1 Constructing a series of lagged values and first differences

t yt yt−1 �yt

2006M09 0.8 − −

2006M10 1.3 0.8 (1.3 − 0.8) = 0.5
2006M11 −0.9 1.3 (−0.9 − 1.3) = −2.2
2006M12 0.2 −0.9 (0.2 − −0.9) = 1.1
2007M01 −1.7 0.2 (−1.7 −0.2) = −1.9
2007M02 2.3 −1.7 (2.3 − −1.7) = 4.0
2007M03 0.1 2.3 (0.1 − 2.3) = −2.2
2007M04 0.0 0.1 (0.0 − 0.1) = −0.1
. . . .
. . . .
. . . .

4.5.1 The concept of a lagged value

The lagged value of a variable (which may be yt , xt , or ut ) is simply the

value that the variable took during a previous period. So for example, the

value of yt lagged one period, written yt−1, can be constructed by shifting

all of the observations forward one period in a spreadsheet, as illustrated

in table 4.1.

So, the value in the 2006M10 row and the yt−1 column shows the value

that yt took in the previous period, 2006M09, which was 0.8. The last

column in table 4.1 shows another quantity relating to y, namely the

‘first difference’. The first difference of y, also known as the change in y,

and denoted �yt , is calculated as the difference between the values of y

in this period and in the previous period. This is calculated as

�yt = yt − yt−1 (4.8)

Note that when one-period lags or first differences of a variable are con-

structed, the first observation is lost. Thus a regression of �yt using the

above data would begin with the October 2006 data point. It is also possi-

ble to produce two-period lags, three-period lags, and so on. These would

be accomplished in the obvious way.

4.5.2 Graphical tests for autocorrelation

In order to test for autocorrelation, it is necessary to investigate whether

any relationships exist between the current value of û, ût , and any of

its previous values, ût−1, ût−2, . . . The first step is to consider possible
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Figure 4.3

Plot of ût against

ût−1, showing

positive

autocorrelation

relationships between the current residual and the immediately previ-

ous one, ût−1, via a graphical exploration. Thus ût is plotted against ût−1,

and ût is plotted over time. Some stereotypical patterns that may be found

in the residuals are discussed below.

Figures 4.3 and 4.4 show positive autocorrelation in the residuals, which

is indicated by a cyclical residual plot over time. This case is known as pos-

itive autocorrelation since on average if the residual at time t − 1 is positive,

the residual at time t is likely to be also positive; similarly, if the residual

at t − 1 is negative, the residual at t is also likely to be negative. Figure 4.3

shows that most of the dots representing observations are in the first and

third quadrants, while figure 4.4 shows that a positively autocorrelated

series of residuals will not cross the time-axis very frequently.

Figures 4.5 and 4.6 show negative autocorrelation, indicated by an

alternating pattern in the residuals. This case is known as negative

autocorrelation since on average if the residual at time t − 1 is positive,

the residual at time t is likely to be negative; similarly, if the residual

at t − 1 is negative, the residual at t is likely to be positive. Figure 4.5

shows that most of the dots are in the second and fourth quadrants,

while figure 4.6 shows that a negatively autocorrelated series of residu-

als will cross the time-axis more frequently than if they were distributed

randomly.
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Plot of ût over time,

showing positive

autocorrelation
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Figure 4.5

Plot of ût against

ût−1, showing

negative

autocorrelation

Finally, figures 4.7 and 4.8 show no pattern in residuals at all: this is

what is desirable to see. In the plot of ût against ût−1 (figure 4.7), the points

are randomly spread across all four quadrants, and the time series plot of

the residuals (figure 4.8) does not cross the x -axis either too frequently or

too little.
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Plot of ût over time,

showing negative

autocorrelation
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Figure 4.7

Plot of ût against

ût−1, showing no

autocorrelation

4.5.3 Detecting autocorrelation: the Durbin–Watson test

Of course, a first step in testing whether the residual series from an esti-

mated model are autocorrelated would be to plot the residuals as above,

looking for any patterns. Graphical methods may be difficult to interpret

in practice, however, and hence a formal statistical test should also be

applied. The simplest test is due to Durbin and Watson (1951).
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Plot of ût over time,

showing no

autocorrelation

Durbin--Watson (DW) is a test for first order autocorrelation -- i.e. it tests

only for a relationship between an error and its immediately previous

value. One way to motivate the test and to interpret the test statistic

would be in the context of a regression of the time t error on its previous

value

ut = ρut−1 + vt (4.9)

where vt ∼ N (0, σ 2
v ). The DW test statistic has as its null and alternative

hypotheses

H0 : ρ = 0 and H1 : ρ �= 0

Thus, under the null hypothesis, the errors at time t − 1 and t are indepen-

dent of one another, and if this null were rejected, it would be concluded

that there was evidence of a relationship between successive residuals. In

fact, it is not necessary to run the regression given by (4.9) since the test

statistic can be calculated using quantities that are already available after

the first regression has been run

DW =

T
∑

t=2

(ût − ût−1)2

T
∑

t=2

û2
t

(4.10)

The denominator of the test statistic is simply (the number of observations

−1) × the variance of the residuals. This arises since if the average of the
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residuals is zero

var(ût ) = E(û2
t ) =

1

T − 1

T
∑

t=2

û2
t

so that
T

∑

t=2

û2
t = var(ût ) × (T − 1)

The numerator ‘compares’ the values of the error at times t − 1 and t .

If there is positive autocorrelation in the errors, this difference in the

numerator will be relatively small, while if there is negative autocorrela-

tion, with the sign of the error changing very frequently, the numerator

will be relatively large. No autocorrelation would result in a value for the

numerator between small and large.

It is also possible to express the DW statistic as an approximate function

of the estimated value of ρ

DW ≈ 2(1 − ρ̂) (4.11)

where ρ̂ is the estimated correlation coefficient that would have been

obtained from an estimation of (4.9). To see why this is the case, consider

that the numerator of (4.10) can be written as the parts of a quadratic

T
∑

t=2

(ût − ût−1)2 =

T
∑

t=2

û2
t +

T
∑

t=2

û2
t−1 − 2

T
∑

t=2

ût ût−1 (4.12)

Consider now the composition of the first two summations on the RHS of

(4.12). The first of these is

T
∑

t=2

û2
t = û2

2 + û2
3 + û2

4 + · · · + û2
T

while the second is

T
∑

t=2

û2
t−1 = û2

1 + û2
2 + û2

3 + · · · + û2
T −1

Thus, the only difference between them is that they differ in the first and

last terms in the summation

T
∑

t=2

û2
t

contains û2
T but not û2

1, while

T
∑

t=2

û2
t−1
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contains û2
1 but not û2

T . As the sample size, T , increases towards infin-

ity, the difference between these two will become negligible. Hence, the

expression in (4.12), the numerator of (4.10), is approximately

2

T
∑

t=2

û2
t − 2

T
∑

t=2

ût ût−1

Replacing the numerator of (4.10) with this expression leads to

DW ≈

2

T
∑

t=2

û2
t − 2

T
∑

t=2

ût ût−1

T
∑

t=2

û2
t

= 2

⎛

⎜

⎜

⎜

⎜

⎝

1 −

T
∑

t=2

ût ût−1

T
∑

t=2

û2
t

⎞

⎟

⎟

⎟

⎟

⎠

(4.13)

The covariance between ut and ut−1 can be written as E[(ut − E(ut ))(ut−1 −

E(ut−1))]. Under the assumption that E(ut ) = 0 (and therefore that E(ut−1) =

0), the covariance will be E[ut ut−1]. For the sample residuals, this covari-

ance will be evaluated as

1

T − 1

T
∑

t=2

ût ût−1

Thus, the sum in the numerator of the expression on the right of (4.13)

can be seen as T − 1 times the covariance between ût and ût−1, while the

sum in the denominator of the expression on the right of (4.13) can be

seen from the previous exposition as T − 1 times the variance of ût . Thus,

it is possible to write

DW ≈ 2

(

1 −
T − 1 cov(ût , ût−1)

T − 1 var(ût )

)

= 2

(

1 −
cov(ût , ût−1)

var(ût )

)

= 2 (1 − corr(ût , ût−1)) (4.14)

so that the DW test statistic is approximately equal to 2(1 − ρ̂). Since ρ̂

is a correlation, it implies that −1 ≤ ρ̂ ≤ 1. That is, ρ̂ is bounded to lie

between −1 and +1. Substituting in these limits for ρ̂ to calculate DW

from (4.11) would give the corresponding limits for DW as 0 ≤ DW ≤ 4.

Consider now the implication of DW taking one of three important values

(0, 2, and 4):

● ρ̂ = 0, DW = 2 This is the case where there is no autocorrelation in

the residuals. So roughly speaking, the null hypothesis would not be

rejected if DW is near 2 → i.e. there is little evidence of autocorrelation.

● ρ̂ = 1, DW = 0 This corresponds to the case where there is perfect pos-

itive autocorrelation in the residuals.
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Reject H0:

positive

autocorrelation

Inconclusive

Do not reject

H0: No evidence

of autocorrelation

Inconclusive

Reject H0:

negative

autocorrelation

0 dL dU 4-dU2 4-dL 4

Figure 4.9 Rejection and non-rejection regions for DW test

● ρ̂ = −1, DW = 4 This corresponds to the case where there is perfect

negative autocorrelation in the residuals.

The DW test does not follow a standard statistical distribution such as a

t , F , or χ2. DW has 2 critical values: an upper critical value (dU) and a

lower critical value (dL ), and there is also an intermediate region where

the null hypothesis of no autocorrelation can neither be rejected nor not

rejected! The rejection, non-rejection, and inconclusive regions are shown

on the number line in figure 4.9.

So, to reiterate, the null hypothesis is rejected and the existence of pos-

itive autocorrelation presumed if DW is less than the lower critical value;

the null hypothesis is rejected and the existence of negative autocorrela-

tion presumed if DW is greater than 4 minus the lower critical value; the

null hypothesis is not rejected and no significant residual autocorrelation

is presumed if DW is between the upper and 4 minus the upper limits.

Example 4.2

A researcher wishes to test for first order serial correlation in the residuals

from a linear regression. The DW test statistic value is 0.86. There are 80

quarterly observations in the regression, and the regression is of the form

yt = β1 + β2x2t + β3x3t + β4x4t + ut (4.15)

The relevant critical values for the test (see table A2.6 in the appendix of

statistical distributions at the end of this book), are dL = 1.42, dU = 1.57, so

4 − dU = 2.43 and 4 − dL = 2.58. The test statistic is clearly lower than the

lower critical value and hence the null hypothesis of no autocorrelation

is rejected and it would be concluded that the residuals from the model

appear to be positively autocorrelated.

4.5.4 Conditions which must be fulfilled for DW to be a valid test

In order for the DW test to be valid for application, three conditions must

be fulfilled (box 4.3).
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Box 4.3 Conditions for DW to be a valid test

(1) There must be a constant term in the regression

(2) The regressors must be non-stochastic – as assumption 4 of the CLRM (see p. 160

and chapter 6)

(3) There must be no lags of dependent variable (see section 4.5.8) in the regression.

If the test were used in the presence of lags of the dependent vari-

able or otherwise stochastic regressors, the test statistic would be biased

towards 2, suggesting that in some instances the null hypothesis of no

autocorrelation would not be rejected when it should be.

4.5.5 Another test for autocorrelation: the Breusch–Godfrey test

Recall that DW is a test only of whether consecutive errors are related to

one another. So, not only can the DW test not be applied if a certain set of

circumstances are not fulfilled, there will also be many forms of residual

autocorrelation that DW cannot detect. For example, if corr(ût , ût−1) = 0,

but corr(ût , ût−2) �= 0, DW as defined above will not find any autocorre-

lation. One possible solution would be to replace ût−1 in (4.10) with ût−2.

However, pairwise examinations of the correlations (ût , ût−1), (ût , ût−2), (ût ,

ût−3), . . . will be tedious in practice and is not coded in econometrics soft-

ware packages, which have been programmed to construct DW using only

a one-period lag. In addition, the approximation in (4.11) will deteriorate

as the difference between the two time indices increases. Consequently,

the critical values should also be modified somewhat in these cases.

Therefore, it is desirable to examine a joint test for autocorrelation that

will allow examination of the relationship between ût and several of its

lagged values at the same time. The Breusch--Godfrey test is a more general

test for autocorrelation up to the rth order. The model for the errors under

this test is

ut = ρ1ut−1 + ρ2ut−2 + ρ3ut−3 + · · · + ρr ut−r + vt , vt ∼ N
(

0, σ 2
v

)

(4.16)

The null and alternative hypotheses are:

H0 : ρ1 = 0 and ρ2 = 0 and . . . and ρr = 0

H1 : ρ1 �= 0 or ρ2 �= 0 or . . . or ρr �= 0

So, under the null hypothesis, the current error is not related to any of

its r previous values. The test is carried out as in box 4.4.

Note that (T − r ) pre-multiplies R2 in the test for autocorrelation rather

than T (as was the case for the heteroscedasticity test). This arises because
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Box 4.4 Conducting a Breusch–Godfrey test

(1) Estimate the linear regression using OLS and obtain the residuals, ût

(2) Regress ût on all of the regressors from stage 1 (the xs) plus ût−1, ût−2, . . . , ût−r ;

the regression will thus be

ût = γ1 + γ2x2t + γ3x3t + γ4x4t + ρ1ût−1 + ρ2ût−2 + ρ3ût−3

+ · · · + ρr ût−r + vt , vt ∼ N
(

0, σ 2
v

)

(4.17)

Obtain R2 from this auxiliary regression

(3) Letting T denote the number of observations, the test statistic is given by

(T − r )R2 ∼ χ2
r

the first r observations will effectively have been lost from the sample

in order to obtain the r lags used in the test regression, leaving (T − r )

observations from which to estimate the auxiliary regression. If the test

statistic exceeds the critical value from the Chi-squared statistical tables,

reject the null hypothesis of no autocorrelation. As with any joint test,

only one part of the null hypothesis has to be rejected to lead to rejection

of the hypothesis as a whole. So the error at time t has to be significantly

related only to one of its previous r values in the sample for the null of

no autocorrelation to be rejected. The test is more general than the DW

test, and can be applied in a wider variety of circumstances since it does

not impose the DW restrictions on the format of the first stage regression.

One potential difficulty with Breusch--Godfrey, however, is in determin-

ing an appropriate value of r , the number of lags of the residuals, to use

in computing the test. There is no obvious answer to this, so it is typical

to experiment with a range of values, and also to use the frequency of the

data to decide. So, for example, if the data is monthly or quarterly, set r

equal to 12 or 4, respectively. The argument would then be that errors at

any given time would be expected to be related only to those errors in the

previous year. Obviously, if the model is statistically adequate, no evidence

of autocorrelation should be found in the residuals whatever value of r is

chosen.

4.5.6 Consequences of ignoring autocorrelation if it is present

In fact, the consequences of ignoring autocorrelation when it is present

are similar to those of ignoring heteroscedasticity. The coefficient esti-

mates derived using OLS are still unbiased, but they are inefficient, i.e.

they are not BLUE, even at large sample sizes, so that the standard er-

ror estimates could be wrong. There thus exists the possibility that the

wrong inferences could be made about whether a variable is or is not



150 Introductory Econometrics for Finance

an important determinant of variations in y. In the case of positive

serial correlation in the residuals, the OLS standard error estimates will

be biased downwards relative to the true standard errors. That is, OLS

will understate their true variability. This would lead to an increase in

the probability of type I error -- that is, a tendency to reject the null hy-

pothesis sometimes when it is correct. Furthermore, R2 is likely to be

inflated relative to its ‘correct’ value if autocorrelation is present but ig-

nored, since residual autocorrelation will lead to an underestimate of the

true error variance (for positive autocorrelation).

4.5.7 Dealing with autocorrelation

If the form of the autocorrelation is known, it would be possible to use

a GLS procedure. One approach, which was once fairly popular, is known

as the Cochrane--Orcutt procedure (see box 4.5). Such methods work by as-

suming a particular form for the structure of the autocorrelation (usually

a first order autoregressive process -- see chapter 5 for a general description

of these models). The model would thus be specified as follows:

yt = β1 + β2x2t + β3x3t + ut , ut = ρut−1 + vt (4.18)

Note that a constant is not required in the specification for the errors

since E(ut ) = 0. If this model holds at time t , it is assumed to also hold

for time t − 1, so that the model in (4.18) is lagged one period

yt−1 = β1 + β2x2t−1 + β3x3t−1 + ut−1 (4.19)

Multiplying (4.19) by ρ

ρyt−1 = ρβ1 + ρβ2x2t−1 + ρβ3x3t−1 + ρut−1 (4.20)

Subtracting (4.20) from (4.18) would give

yt − ρyt−1 = β1 − ρβ1 + β2x2t − ρβ2x2t−1 + β3x3t − ρβ3x3t−1 + ut − ρut−1

(4.21)

Factorising, and noting that vt = ut − ρut−1

(yt − ρyt−1) = (1 − ρ)β1 + β2(x2t − ρx2t−1) + β3(x3t − ρx3t−1) + vt

(4.22)

Setting y∗
t = yt − ρyt−1, β

∗
1 = (1 − ρ)β1, x∗

2t = (x2t − ρx2t−1), and x∗
3t = (x3t −

ρx3t−1), the model in (4.22) can be written

y∗
t = β∗

1 + β2x∗
2t + β3x∗

3t + vt (4.23)
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Box 4.5 The Cochrane–Orcutt procedure

(1) Assume that the general model is of the form (4.18) above. Estimate the equation

in (4.18) using OLS, ignoring the residual autocorrelation.

(2) Obtain the residuals, and run the regression

ût = ρût−1 + vt (4.24)

(3) Obtain ρ̂ and construct y∗
t etc. using this estimate of ρ̂.

(4) Run the GLS regression (4.23).

Since the final specification (4.23) contains an error term that is free

from autocorrelation, OLS can be directly applied to it. This procedure is

effectively an application of GLS. Of course, the construction of y∗
t etc.

requires ρ to be known. In practice, this will never be the case so that ρ

has to be estimated before (4.23) can be used.

A simple method would be to use the ρ obtained from rearranging

the equation for the DW statistic given in (4.11). However, this is only an

approximation as the related algebra showed. This approximation may be

poor in the context of small samples.

The Cochrane--Orcutt procedure is an alternative, which operates as in

box 4.5.

This could be the end of the process. However, Cochrane and Orcutt

(1949) argue that better estimates can be obtained by going through steps

2--4 again. That is, given the new coefficient estimates, β∗
1 , β2, β3, etc. con-

struct again the residual and regress it on its previous value to obtain

a new estimate for ρ̂. This would then be used to construct new values

of the variables y∗
t , x∗

2t , x∗
3t and a new (4.23) is estimated. This procedure

would be repeated until the change in ρ̂ between one iteration and the

next is less than some fixed amount (e.g. 0.01). In practice, a small number

of iterations (no more than 5) will usually suffice.

However, the Cochrane--Orcutt procedure and similar approaches re-

quire a specific assumption to be made concerning the form of the model

for the autocorrelation. Consider again (4.22). This can be rewritten taking

ρyt−1 over to the RHS

yt = (1 − ρ)β1 + β2(x2t − ρx2t−1) + β3(x3t − ρx3t−1) + ρyt−1 + vt (4.25)

Expanding the brackets around the explanatory variable terms would give

yt = (1 − ρ)β1 + β2x2t − ρβ2x2t−1 + β3x3t − ρβ3x3t−1 + ρyt−1 + vt (4.26)
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Now, suppose that an equation containing the same variables as (4.26)

were estimated using OLS

yt = γ1 + γ2x2t + γ3x2t−1 + γ4x3t + γ5x3t−1 + γ6 yt−1 + vt (4.27)

It can be seen that (4.26) is a restricted version of (4.27), with the re-

strictions imposed that the coefficient on x2t in (4.26) multiplied by the

negative of the coefficient on yt−1 gives the coefficient on x2t−1, and that

the coefficient on x3t multiplied by the negative of the coefficient on yt−1

gives the coefficient on x3t−1. Thus, the restrictions implied for (4.27) to

get (4.26) are

γ2γ6 = −γ3 and γ4γ6 = −γ5

These are known as the common factor restrictions, and they should be tested

before the Cochrane--Orcutt or similar procedure is implemented. If the

restrictions hold, Cochrane--Orcutt can be validly applied. If not, however,

Cochrane--Orcutt and similar techniques would be inappropriate, and the

appropriate step would be to estimate an equation such as (4.27) directly

using OLS. Note that in general there will be a common factor restriction

for every explanatory variable (excluding a constant) x2t , x3t , . . . , xkt in the

regression. Hendry and Mizon (1978) argued that the restrictions are likely

to be invalid in practice and therefore a dynamic model that allows for

the structure of y should be used rather than a residual correction on a

static model -- see also Hendry (1980).

The White variance--covariance matrix of the coefficients (that is, calcu-

lation of the standard errors using the White correction for heteroscedas-

ticity) is appropriate when the residuals of the estimated equation are

heteroscedastic but serially uncorrelated. Newey and West (1987) develop

a variance--covariance estimator that is consistent in the presence of both

heteroscedasticity and autocorrelation. So an alternative approach to deal-

ing with residual autocorrelation would be to use appropriately modified

standard error estimates.

While White’s correction to standard errors for heteroscedasticity as dis-

cussed above does not require any user input, the Newey--West procedure

requires the specification of a truncation lag length to determine the num-

ber of lagged residuals used to evaluate the autocorrelation. EViews uses

INTEGER[4(T/100)2/9]. In EViews, the Newey--West procedure for estimat-

ing the standard errors is employed by invoking it from the same place

as the White heteroscedasticity correction. That is, click the Estimate but-

ton and in the Equation Estimation window, choose the Options tab and

then instead of checking the ‘White’ box, check Newey-West. While this

option is listed under ‘Heteroskedasticity consistent coefficient variance’,
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the Newey-West procedure in fact produces ‘HAC’ (Heteroscedasticity and

Autocorrelation Consistent) standard errors that correct for both autocor-

relation and heteroscedasticity that may be present.

A more ‘modern’ view concerning autocorrelation is that it presents

an opportunity rather than a problem! This view, associated with Sargan,

Hendry and Mizon, suggests that serial correlation in the errors arises as

a consequence of ‘misspecified dynamics’. For another explanation of the

reason why this stance is taken, recall that it is possible to express the

dependent variable as the sum of the parts that can be explained using

the model, and a part which cannot (the residuals)

yt = ŷt + ût (4.28)

where ŷt are the fitted values from the model (= β̂1 + β̂2x2t + β̂3x3t + · · · +

β̂k xkt ). Autocorrelation in the residuals is often caused by a dynamic struc-

ture in y that has not been modelled and so has not been captured in

the fitted values. In other words, there exists a richer structure in the

dependent variable y and more information in the sample about that

structure than has been captured by the models previously estimated.

What is required is a dynamic model that allows for this extra structure

in y.

4.5.8 Dynamic models

All of the models considered so far have been static in nature, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + β5x5t + ut (4.29)

In other words, these models have allowed for only a contemporaneous re-

lationship between the variables, so that a change in one or more of the

explanatory variables at time t causes an instant change in the depen-

dent variable at time t . But this analysis can easily be extended to the

case where the current value of yt depends on previous values of y or on

previous values of one or more of the variables, e.g.

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + γ1 yt−1 + γ2x2t−1

+ · · · + γk xkt−1 + ut (4.30)

It is of course possible to extend the model even more by adding further

lags, e.g. x2t−2, yt−3. Models containing lags of the explanatory variables

(but no lags of the explained variable) are known as distributed lag models.

Specifications with lags of both explanatory and explained variables are

known as autoregressive distributed lag (ADL) models.

How many lags and of which variables should be included in a dy-

namic regression model? This is a tricky question to answer, but hopefully
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recourse to financial theory will help to provide an answer; for another

response (see section 4.13).

Another potential ‘remedy’ for autocorrelated residuals would be to

switch to a model in first differences rather than in levels. As explained

previously, the first difference of yt , i.e. yt − yt−1 is denoted �yt ; similarly,

one can construct a series of first differences for each of the explanatory

variables, e.g. �x2t = x2t − x2t−1, etc. Such a model has a number of other

useful features (see chapter 7 for more details) and could be expressed as

�yt = β1 + β2�x2t + β3�x3t + ut (4.31)

Sometimes the change in y is purported to depend on previous values

of the level of y or xi (i = 2, . . . , k) as well as changes in the explanatory

variables

�yt = β1 + β2�x2t + β3�x3t + β4x2t−1 + β5 yt−1 + ut (4.32)

4.5.9 Why might lags be required in a regression?

Lagged values of the explanatory variables or of the dependent variable (or

both) may capture important dynamic structure in the dependent variable

that might be caused by a number of factors. Two possibilities that are

relevant in finance are as follows:

● Inertia of the dependent variable Often a change in the value of one

of the explanatory variables will not affect the dependent variable im-

mediately during one time period, but rather with a lag over several

time periods. For example, the effect of a change in market microstruc-

ture or government policy may take a few months or longer to work

through since agents may be initially unsure of what the implications

for asset pricing are, and so on. More generally, many variables in eco-

nomics and finance will change only slowly. This phenomenon arises

partly as a result of pure psychological factors -- for example, in finan-

cial markets, agents may not fully comprehend the effects of a particu-

lar news announcement immediately, or they may not even believe the

news. The speed and extent of reaction will also depend on whether the

change in the variable is expected to be permanent or transitory. Delays

in response may also arise as a result of technological or institutional

factors. For example, the speed of technology will limit how quickly

investors’ buy or sell orders can be executed. Similarly, many investors

have savings plans or other financial products where they are ‘locked in’

and therefore unable to act for a fixed period. It is also worth noting that
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dynamic structure is likely to be stronger and more prevalent the higher

is the frequency of observation of the data.

● Overreactions It is sometimes argued that financial markets overre-

act to good and to bad news. So, for example, if a firm makes a profit

warning, implying that its profits are likely to be down when formally

reported later in the year, the markets might be anticipated to perceive

this as implying that the value of the firm is less than was previously

thought, and hence that the price of its shares will fall. If there is

an overreaction, the price will initially fall below that which is appro-

priate for the firm given this bad news, before subsequently bouncing

back up to a new level (albeit lower than the initial level before the

announcement).

Moving from a purely static model to one which allows for lagged ef-

fects is likely to reduce, and possibly remove, serial correlation which was

present in the static model’s residuals. However, other problems with the

regression could cause the null hypothesis of no autocorrelation to be

rejected, and these would not be remedied by adding lagged variables to

the model:

● Omission of relevant variables, which are themselves autocorrelated

In other words, if there is a variable that is an important determinant

of movements in y, but which has not been included in the model, and

which itself is autocorrelated, this will induce the residuals from the

estimated model to be serially correlated. To give a financial context in

which this may arise, it is often assumed that investors assess one-step-

ahead expected returns on a stock using a linear relationship

rt = α0 + α1	t−1 + ut (4.33)

where 	t−1 is a set of lagged information variables (i.e. 	t−1 is a vector of

observations on a set of variables at time t − 1). However, (4.33) cannot

be estimated since the actual information set used by investors to form

their expectations of returns is not known. 	t−1 is therefore proxied

with an assumed sub-set of that information, Z t−1. For example, in many

popular arbitrage pricing specifications, the information set used in the

estimated model includes unexpected changes in industrial production,

the term structure of interest rates, inflation and default risk premia.

Such a model is bound to omit some informational variables used by

actual investors in forming expectations of returns, and if these are

autocorrelated, it will induce the residuals of the estimated model to

be also autocorrelated.
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● Autocorrelation owing to unparameterised seasonality Suppose that

the dependent variable contains a seasonal or cyclical pattern, where

certain features periodically occur. This may arise, for example, in the

context of sales of gloves, where sales will be higher in the autumn

and winter than in the spring or summer. Such phenomena are likely

to lead to a positively autocorrelated residual structure that is cyclical

in shape, such as that of figure 4.4, unless the seasonal patterns are

captured by the model. See chapter 9 for a discussion of seasonality

and how to deal with it.

● If ‘misspecification’ error has been committed by using an inappro-

priate functional form For example, if the relationship between y and

the explanatory variables was a non-linear one, but the researcher had

specified a linear regression model, this may again induce the residuals

from the estimated model to be serially correlated.

4.5.10 The long-run static equilibrium solution

Once a general model of the form given in (4.32) has been found, it may

contain many differenced and lagged terms that make it difficult to in-

terpret from a theoretical perspective. For example, if the value of x2

were to increase in period t , what would be the effect on y in periods,

t, t + 1, t + 2, and so on? One interesting property of a dynamic model

that can be calculated is its long-run or static equilibrium solution.

The relevant definition of ‘equilibrium’ in this context is that a system

has reached equilibrium if the variables have attained some steady state

values and are no longer changing, i.e. if y and x are in equilibrium, it is

possible to write

yt = yt+1 = . . . = y and x2t = x2t+1 = . . . = x2, and so on.

Consequently, �yt = yt − yt−1 = y − y = 0, �x2t = x2t − x2t−1 = x2 − x2 =

0, etc. since the values of the variables are no longer changing. So the

way to obtain a long-run static solution from a given empirical model

such as (4.32) is:

(1) Remove all time subscripts from the variables

(2) Set error terms equal to their expected values of zero, i.e E(ut ) = 0

(3) Remove differenced terms (e.g. �yt ) altogether

(4) Gather terms in x together and gather terms in y together

(5) Rearrange the resulting equation if necessary so that the dependent

variable y is on the left-hand side (LHS) and is expressed as a function

of the independent variables.
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Example 4.3

Calculate the long-run equilibrium solution for the following model

�yt = β1 + β2�x2t + β3�x3t + β4x2t−1 + β5 yt−1 + ut (4.34)

Applying first steps 1--3 above, the static solution would be given by

0 = β1 + β4x2 + β5 y (4.35)

Rearranging (4.35) to bring y to the LHS

β5 y = −β1 − β4x2 (4.36)

and finally, dividing through by β5

y = −
β1

β5

−
β4

β5

x2 (4.37)

Equation (4.37) is the long-run static solution to (4.34). Note that this

equation does not feature x3, since the only term which contained x3

was in first differenced form, so that x3 does not influence the long-run

equilibrium value of y.

4.5.11 Problems with adding lagged regressors to ‘cure’ autocorrelation

In many instances, a move from a static model to a dynamic one will result

in a removal of residual autocorrelation. The use of lagged variables in a

regression model does, however, bring with it additional problems:

● Inclusion of lagged values of the dependent variable violates the as-

sumption that the explanatory variables are non-stochastic (assump-

tion 4 of the CLRM), since by definition the value of y is determined

partly by a random error term, and so its lagged values cannot be non-

stochastic. In small samples, inclusion of lags of the dependent variable

can lead to biased coefficient estimates, although they are still consis-

tent, implying that the bias will disappear asymptotically (that is, as

the sample size increases towards infinity).

● What does an equation with a large number of lags actually mean?

A model with many lags may have solved a statistical problem

(autocorrelated residuals) at the expense of creating an interpretational

one (the empirical model containing many lags or differenced terms is

difficult to interpret and may not test the original financial theory that

motivated the use of regression analysis in the first place).

Note that if there is still autocorrelation in the residuals of a model

including lags, then the OLS estimators will not even be consistent. To see
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why this occurs, consider the following regression model

yt = β1 + β2x2t + β3x3t + β4 yt−1 + ut (4.38)

where the errors, ut , follow a first order autoregressive process

ut = ρut−1 + vt (4.39)

Substituting into (4.38) for ut from (4.39)

yt = β1 + β2x2t + β3x3t + β4 yt−1 + ρut−1 + vt (4.40)

Now, clearly yt depends upon yt−1. Taking (4.38) and lagging it one period

(i.e. subtracting one from each time index)

yt−1 = β1 + β2x2t−1 + β3x3t−1 + β4 yt−2 + ut−1 (4.41)

It is clear from (4.41) that yt−1 is related to ut−1 since they both appear

in that equation. Thus, the assumption that E(X ′u) = 0 is not satisfied

for (4.41) and therefore for (4.38). Thus the OLS estimator will not be

consistent, so that even with an infinite quantity of data, the coefficient

estimates would be biased.

4.5.12 Autocorrelation and dynamic models in EViews

In EViews, the lagged values of variables can be used as regressors or for

other purposes by using the notation x(−1) for a one-period lag, x(−5)

for a five-period lag, and so on, where x is the variable name. EViews

will automatically adjust the sample period used for estimation to take

into account the observations that are lost in constructing the lags. For

example, if the regression contains five lags of the dependent variable, five

observations will be lost and estimation will commence with observation

six.

In EViews, the DW statistic is calculated automatically, and was given in

the general estimation output screens that result from estimating any re-

gression model. To view the results screen again, click on the View button

in the regression window and select Estimation output. For the Microsoft

macroeconomic regression that included all of the explanatory variables,

the value of the DW statistic was 2.156. What is the appropriate conclu-

sion regarding the presence or otherwise of first order autocorrelation in

this case?

The Breusch--Godfrey test can be conducted by selecting View; Residual

Tests; Serial Correlation LM Test . . . In the new window, type again the

number of lagged residuals you want to include in the test and click on

OK. Assuming that you selected to employ ten lags in the test, the results

would be as given in the following table.
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Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1.497460 Prob. F(10,234) 0.1410
Obs*R-squared 15.15657 Prob. Chi-Square(10) 0.1265

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 08/27/07 Time: 13:26
Sample: 1986M05 2007M04
Included observations: 252
Presample missing value lagged residuals set to zero.

Coefficient Std. Error t-Statistic Prob.

C 0.087053 1.461517 0.059563 0.9526
ERSANDP −0.021725 0.204588 −0.106187 0.9155
DPROD −0.036054 0.510873 −0.070573 0.9438

DCREDIT −9.64E-06 0.000162 −0.059419 0.9527
DINFLATION −0.364149 3.010661 −0.120953 0.9038

DMONEY 0.225441 0.718175 0.313909 0.7539
DSPREAD 0.202672 13.70006 0.014794 0.9882
RTERM −0.19964 3.363238 −0.059360 0.9527

RESID(−1) −0.12678 0.065774 −1.927509 0.0551
RESID(−2) −0.063949 0.066995 −0.954537 0.3408
RESID(−3) −0.038450 0.065536 −0.586694 0.5580
RESID(−4) −0.120761 0.065906 −1.832335 0.0682
RESID(−5) −0.126731 0.065253 −1.942152 0.0533
RESID(−6) −0.090371 0.066169 −1.365755 0.1733
RESID(−7) −0.071404 0.065761 −1.085803 0.2787
RESID(−8) −0.119176 0.065926 −1.807717 0.0719
RESID(−9) −0.138430 0.066121 −2.093571 0.0374
RESID(−10) −0.060578 0.065682 −0.922301 0.3573

R-squared 0.060145 Mean dependent var 8.11E-17
Adjusted R-squared −0.008135 S.D. dependent var 13.75376
S.E. of regression 13.80959 Akaike info criterion 8.157352
Sum squared resid 44624.90 Schwarz criterion 8.409454
Log likelihood −1009.826 Hannan-Quinn criter. 8.258793
F-statistic 0.880859 Durbin-Watson stat 2.013727
Prob(F-statistic) 0.597301

In the first table of output, EViews offers two versions of the test -- an

F -version and a χ2 version, while the second table presents the estimates

from the auxiliary regression. The conclusion from both versions of the

test in this case is that the null hypothesis of no autocorrelation should

not be rejected. Does this agree with the DW test result?
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4.5.13 Autocorrelation in cross-sectional data

The possibility that autocorrelation may occur in the context of a time

series regression is quite intuitive. However, it is also plausible that auto-

correlation could be present in certain types of cross-sectional data. For

example, if the cross-sectional data comprise the profitability of banks in

different regions of the US, autocorrelation may arise in a spatial sense,

if there is a regional dimension to bank profitability that is not captured

by the model. Thus the residuals from banks of the same region or in

neighbouring regions may be correlated. Testing for autocorrelation in

this case would be rather more complex than in the time series context,

and would involve the construction of a square, symmetric ‘spatial con-

tiguity matrix’ or a ‘distance matrix’. Both of these matrices would be

N × N , where N is the sample size. The former would be a matrix of ze-

ros and ones, with one for element i , j when observation i occurred for

a bank in the same region to, or sufficiently close to, region j and zero

otherwise (i, j = 1, . . . , N ). The distance matrix would comprise elements

that measured the distance (or the inverse of the distance) between bank

i and bank j . A potential solution to a finding of autocorrelated residuals

in such a model would be again to use a model containing a lag struc-

ture, in this case known as a ‘spatial lag’. Further details are contained in

Anselin (1988).

4.6 Assumption 4: the xt are non-stochastic

Fortunately, it turns out that the OLS estimator is consistent and unbiased

in the presence of stochastic regressors, provided that the regressors are

not correlated with the error term of the estimated equation. To see this,

recall that

β̂ = (X ′ X )−1 X ′y and y = Xβ + u (4.42)

Thus

β̂ = (X ′ X )−1 X ′(Xβ + u) (4.43)

β̂ = (X ′ X )−1 X ′ Xβ + (X ′ X )−1 X ′u (4.44)

β̂ = β + (X ′ X )−1 X ′u (4.45)

Taking expectations, and provided that X and u are independent,1

E(β̂) = E(β) + E((X ′ X )−1 X ′u) (4.46)

E(β̂) = β + E[(X ′ X )−1 X ′]E(u) (4.47)

1 A situation where X and u are not independent is discussed at length in chapter 6.
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Since E(u) = 0, this expression will be zero and therefore the estimator is

still unbiased, even if the regressors are stochastic.

However, if one or more of the explanatory variables is contemporane-

ously correlated with the disturbance term, the OLS estimator will not

even be consistent. This results from the estimator assigning explanatory

power to the variables where in reality it is arising from the correlation

between the error term and yt . Suppose for illustration that x2t and ut

are positively correlated. When the disturbance term happens to take a

high value, yt will also be high (because yt = β1 + β2x2t + · · · + ut ). But if

x2t is positively correlated with ut , then x2t is also likely to be high. Thus

the OLS estimator will incorrectly attribute the high value of yt to a high

value of x2t , where in reality yt is high simply because ut is high, which

will result in biased and inconsistent parameter estimates and a fitted

line that appears to capture the features of the data much better than it

does in reality.

4.7 Assumption 5: the disturbances are normally distributed

Recall that the normality assumption (ut ∼ N(0, σ 2)) is required in order

to conduct single or joint hypothesis tests about the model parameters.

4.7.1 Testing for departures from normality

One of the most commonly applied tests for normality is the Bera--Jarque

(hereafter BJ) test. BJ uses the property of a normally distributed random

variable that the entire distribution is characterised by the first two mo-

ments -- the mean and the variance. The standardised third and fourth

moments of a distribution are known as its skewness and kurtosis. Skewness

measures the extent to which a distribution is not symmetric about its

mean value and kurtosis measures how fat the tails of the distribution are.

A normal distribution is not skewed and is defined to have a coefficient

of kurtosis of 3. It is possible to define a coefficient of excess kurtosis,

equal to the coefficient of kurtosis minus 3; a normal distribution will

thus have a coefficient of excess kurtosis of zero. A normal distribution is

symmetric and said to be mesokurtic. To give some illustrations of what a

series having specific departures from normality may look like, consider

figures 4.10 and 4.11.

A normal distribution is symmetric about its mean, while a skewed

distribution will not be, but will have one tail longer than the other, such

as in the right hand part of figure 4.10.
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Figure 4.10 A normal versus a skewed distribution
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Figure 4.11

A leptokurtic versus

a normal distribution

A leptokurtic distribution is one which has fatter tails and is more

peaked at the mean than a normally distributed random variable with

the same mean and variance, while a platykurtic distribution will be less

peaked in the mean, will have thinner tails, and more of the distribution

in the shoulders than a normal. In practice, a leptokurtic distribution

is far more likely to characterise financial (and economic) time series,

and to characterise the residuals from a financial time series model. In

figure 4.11, the leptokurtic distribution is shown by the bold line, with

the normal by the faint line.
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Bera and Jarque (1981) formalise these ideas by testing whether the co-

efficient of skewness and the coefficient of excess kurtosis are jointly zero.

Denoting the errors by u and their variance by σ 2, it can be proved that

the coefficients of skewness and kurtosis can be expressed respectively as

b1 =
E[u3]

(

σ 2
)3/2

and b2 =
E[u4]
(

σ 2
)2

(4.48)

The kurtosis of the normal distribution is 3 so its excess kurtosis (b2 − 3)

is zero.

The Bera--Jarque test statistic is given by

W = T

[

b2
1

6
+

(b2 − 3)2

24

]

(4.49)

where T is the sample size. The test statistic asymptotically follows a χ2(2)

under the null hypothesis that the distribution of the series is symmetric

and mesokurtic.

b1 and b2 can be estimated using the residuals from the OLS regression,

û. The null hypothesis is of normality, and this would be rejected if the

residuals from the model were either significantly skewed or leptokurtic/

platykurtic (or both).

4.7.2 Testing for non-normality using EViews

The Bera--Jarque normality tests results can be viewed by selecting

View/Residual Tests/Histogram – Normality Test. The statistic has a χ2

distribution with 2 degrees of freedom under the null hypothesis of nor-

mally distributed errors. If the residuals are normally distributed, the

histogram should be bell-shaped and the Bera--Jarque statistic would not

be significant. This means that the p-value given at the bottom of the

normality test screen should be bigger than 0.05 to not reject the null of

normality at the 5% level. In the example of the Microsoft regression, the

screen would appear as in screenshot 4.2.

In this case, the residuals are very negatively skewed and are leptokurtic.

Hence the null hypothesis for residual normality is rejected very strongly

(the p-value for the BJ test is zero to six decimal places), implying that

the inferences we make about the coefficient estimates could be wrong,

although the sample is probably just about large enough that we need be

less concerned than we would be with a small sample. The non-normality

in this case appears to have been caused by a small number of very

large negative residuals representing monthly stock price falls of more

than −25%.
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Screenshot 4.2

Non-normality test

results

4.7.3 What should be done if evidence of non-normality is found?

It is not obvious what should be done! It is, of course, possible to em-

ploy an estimation method that does not assume normality, but such a

method may be difficult to implement, and one can be less sure of its

properties. It is thus desirable to stick with OLS if possible, since its be-

haviour in a variety of circumstances has been well researched. For sample

sizes that are sufficiently large, violation of the normality assumption is

virtually inconsequential. Appealing to a central limit theorem, the test

statistics will asymptotically follow the appropriate distributions even in

the absence of error normality.2

In economic or financial modelling, it is quite often the case that one

or two very extreme residuals cause a rejection of the normality assump-

tion. Such observations would appear in the tails of the distribution, and

would therefore lead u4, which enters into the definition of kurtosis, to

be very large. Such observations that do not fit in with the pattern of the

remainder of the data are known as outliers. If this is the case, one way

2 The law of large numbers states that the average of a sample (which is a random

variable) will converge to the population mean (which is fixed), and the central limit

theorem states that the sample mean converges to a normal distribution.
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to improve the chances of error normality is to use dummy variables or

some other method to effectively remove those observations.

In the time series context, suppose that a monthly model of asset re-

turns from 1980--90 had been estimated, and the residuals plotted, and

that a particularly large outlier has been observed for October 1987, shown

in figure 4.12.

A new variable called D87M10t could be defined as

D87M10t = 1 during October 1987 and zero otherwise

The observations for the dummy variable would appear as in box 4.6.

The dummy variable would then be used just like any other variable in

the regression model, e.g.

yt = β1 + β2x2t + β3x3t + β4 D87M10t + ut (4.50)

Box 4.6 Observations for the dummy variable

Time Value of dummy variable D87M10t

1986M12 0

1987M01 0

...
...

1987M09 0

1987M10 1

1987M11 0

..

.
..
.
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Possible effect of an

outlier on OLS

estimation

This type of dummy variable that takes the value one for only a single

observation has an effect exactly equivalent to knocking out that obser-

vation from the sample altogether, by forcing the residual for that obser-

vation to zero. The estimated coefficient on the dummy variable will be

equal to the residual that the dummied observation would have taken if

the dummy variable had not been included.

However, many econometricians would argue that dummy variables to

remove outlying residuals can be used to artificially improve the charac-

teristics of the model -- in essence fudging the results. Removing outlying

observations will reduce standard errors, reduce the RSS, and therefore

increase R2, thus improving the apparent fit of the model to the data.

The removal of observations is also hard to reconcile with the notion in

statistics that each data point represents a useful piece of information.

The other side of this argument is that observations that are ‘a long

way away’ from the rest, and seem not to fit in with the general pattern

of the rest of the data are known as outliers. Outliers can have a serious

effect on coefficient estimates, since by definition, OLS will receive a big

penalty, in the form of an increased RSS, for points that are a long way

from the fitted line. Consequently, OLS will try extra hard to minimise

the distances of points that would have otherwise been a long way from

the line. A graphical depiction of the possible effect of an outlier on OLS

estimation, is given in figure 4.13.

In figure 4.13, one point is a long way away from the rest. If this point

is included in the estimation sample, the fitted line will be the dotted

one, which has a slight positive slope. If this observation were removed,

the full line would be the one fitted. Clearly, the slope is now large and

negative. OLS would not select this line if the outlier is included since the
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observation is a long way from the others and hence when the residual

(the distance from the point to the fitted line) is squared, it would lead to

a big increase in the RSS. Note that outliers could be detected by plotting

y against x only in the context of a bivariate regression. In the case where

there are more explanatory variables, outliers are easiest identified by

plotting the residuals over time, as in figure 4.12, etc.

So, it can be seen that a trade-off potentially exists between the need

to remove outlying observations that could have an undue impact on the

OLS estimates and cause residual non-normality on the one hand, and the

notion that each data point represents a useful piece of information on

the other. The latter is coupled with the fact that removing observations

at will could artificially improve the fit of the model. A sensible way to

proceed is by introducing dummy variables to the model only if there is

both a statistical need to do so and a theoretical justification for their

inclusion. This justification would normally come from the researcher’s

knowledge of the historical events that relate to the dependent variable

and the model over the relevant sample period. Dummy variables may

be justifiably used to remove observations corresponding to ‘one-off’ or

extreme events that are considered highly unlikely to be repeated, and

the information content of which is deemed of no relevance for the data

as a whole. Examples may include stock market crashes, financial panics,

government crises, and so on.

Non-normality in financial data could also arise from certain types of

heteroscedasticity, known as ARCH -- see chapter 8. In this case, the non-

normality is intrinsic to all of the data and therefore outlier removal

would not make the residuals of such a model normal.

Another important use of dummy variables is in the modelling of sea-

sonality in financial data, and accounting for so-called ‘calendar anoma-

lies’, such as day-of-the-week effects and weekend effects. These are dis-

cussed in chapter 9.

4.7.4 Dummy variable construction and use in EViews

As we saw from the plot of the distribution above, the non-normality in

the residuals from the Microsoft regression appears to have been caused

by a small number of outliers in the regression residuals. Such events

can be identified if it is present by plotting the actual values, the fitted

values and the residuals of the regression. This can be achieved in EViews

by selecting View/Actual, Fitted, Residual/Actual, Fitted, Residual Graph.

The plot should look as in screenshot 4.3.

From the graph, it can be seen that there are several large (negative)

outliers, but the largest of all occur in early 1998 and early 2003. All of the
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Screenshot 4.3

Regression

residuals, actual

values and fitted

series

large outliers correspond to months where the actual return was much

smaller (i.e. more negative) than the model would have predicted. Inter-

estingly, the residual in October 1987 is not quite so prominent because

even though the stock price fell, the market index value fell as well, so

that the stock price fall was at least in part predicted (this can be seen by

comparing the actual and fitted values during that month).

In order to identify the exact dates that the biggest outliers were re-

alised, we could use the shading option by right clicking on the graph

and selecting the ‘add lines & shading’ option. But it is probably easier to

just examine a table of values for the residuals, which can be achieved by

selecting View/Actual, Fitted, Residual/Actual, Fitted, Residual Table. If we

do this, it is evident that the two most extreme residuals (with values to

the nearest integer) were in February 1998 (−68) and February 2003 (−67).

As stated above, one way to remove big outliers in the data is by using

dummy variables. It would be tempting, but incorrect, to construct one

dummy variable that takes the value 1 for both Feb 98 and Feb 03, but

this would not have the desired effect of setting both residuals to zero. In-

stead, to remove two outliers requires us to construct two separate dummy
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variables. In order to create the Feb 98 dummy first, we generate a series

called ‘FEB98DUM’ that will initially contain only zeros. Generate this se-

ries (hint: you can use ‘Quick/Generate Series’ and then type in the box

‘FEB98DUM = 0’). Double click on the new object to open the spreadsheet

and turn on the editing mode by clicking ‘Edit +/−’ and input a single 1

in the cell that corresponds to February 1998. Leave all other cell entries

as zeros.

Once this dummy variable has been created, repeat the process above to

create another dummy variable called ‘FEB03DUM’ that takes the value

1 in February 2003 and zero elsewhere and then rerun the regression

including all the previous variables plus these two dummy variables. This

can most easily be achieved by clicking on the ‘Msoftreg’ results object,

then the Estimate button and adding the dummy variables to the end of

the variable list. The full list of variables is

ermsoft c ersandp dprod dcredit dinflation dmoney dspread rterm

feb98dum feb03dum

and the results of this regression are as in the following table.

Dependent Variable: ERMSOFT
Method: Least Squares
Date: 08/29/07 Time: 09:11
Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.086606 1.315194 −0.065850 0.9476
ERSANDP 1.547971 0.183945 8.415420 0.0000
DPROD 0.455015 0.451875 1.006948 0.315

DCREDIT −5.92E-05 0.000145 −0.409065 0.6829
DINFLATION 4.913297 2.685659 1.829457 0.0686

DMONEY −1.430608 0.644601 −2.219369 0.0274
DSPREAD 8.624895 12.22705 0.705395 0.4812
RTERM 6.893754 2.993982 2.302537 0.0222

FEB98DUM −69.14177 12.68402 −5.451093 0.0000
FEB03DUM −68.24391 12.65390 −5.393113 0.0000

R-squared 0.358962 Mean dependent var −0.420803
Adjusted R-squared 0.335122 S.D. dependent var 15.41135
S.E. of regression 12.56643 Akaike info criterion 7.938808
Sum squared resid 38215.45 Schwarz criterion 8.078865
Log likelihood −990.2898 Hannan-Quinn criter. 7.995164
F-statistic 15.05697 Durbin-Watson stat 2.142031
Prob(F-statistic) 0.000000
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Note that the dummy variable parameters are both highly significant and

take approximately the values that the corresponding residuals would

have taken if the dummy variables had not been included in the model.3

By comparing the results with those of the regression above that excluded

the dummy variables, it can be seen that the coefficient estimates on the

remaining variables change quite a bit in this instance and the signifi-

cances improve considerably. The term structure and money supply pa-

rameters are now both significant at the 5% level, and the unexpected

inflation parameter is now significant at the 10% level. The R2 value has

risen from 0.20 to 0.36 because of the perfect fit of the dummy variables

to those two extreme outlying observations.

Finally, if we re-examine the normality test results by clicking

View/Residual Tests/Histogram – Normality Test, we will see that while

the skewness and kurtosis are both slightly closer to the values that they

would take under normality, the Bera--Jarque test statistic still takes a

value of 829 (compared with over 1000 previously). We would thus con-

clude that the residuals are still a long way from following a normal

distribution. While it would be possible to continue to generate dummy

variables, there is a limit to the extent to which it would be desirable to do

so. With this particular regression, we are unlikely to be able to achieve a

residual distribution that is close to normality without using an excessive

number of dummy variables. As a rule of thumb, in a monthly sample

with 252 observations, it is reasonable to include, perhaps, two or three

dummy variables, but more would probably be excessive.

4.8 Multicollinearity

An implicit assumption that is made when using the OLS estimation

method is that the explanatory variables are not correlated with one an-

other. If there is no relationship between the explanatory variables, they

would be said to be orthogonal to one another. If the explanatory variables

were orthogonal to one another, adding or removing a variable from a

regression equation would not cause the values of the coefficients on the

other variables to change.

In any practical context, the correlation between explanatory variables

will be non-zero, although this will generally be relatively benign in the

3 Note the inexact correspondence between the values of the residuals and the values of

the dummy variable parameters because two dummies are being used together; had we

included only one dummy, the value of the dummy variable coefficient and that which

the residual would have taken would be identical.
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sense that a small degree of association between explanatory variables

will almost always occur but will not cause too much loss of precision.

However, a problem occurs when the explanatory variables are very highly

correlated with each other, and this problem is known as multicollinearity.

It is possible to distinguish between two classes of multicollinearity: per-

fect multicollinearity and near multicollinearity.

Perfect multicollinearity occurs when there is an exact relationship be-

tween two or more variables. In this case, it is not possible to estimate all

of the coefficients in the model. Perfect multicollinearity will usually be

observed only when the same explanatory variable is inadvertently used

twice in a regression. For illustration, suppose that two variables were

employed in a regression function such that the value of one variable was

always twice that of the other (e.g. suppose x3 = 2x2). If both x3 and x2

were used as explanatory variables in the same regression, then the model

parameters cannot be estimated. Since the two variables are perfectly re-

lated to one another, together they contain only enough information to

estimate one parameter, not two. Technically, the difficulty would occur

in trying to invert the (X ′ X ) matrix since it would not be of full rank

(two of the columns would be linearly dependent on one another), so

that the inverse of (X ′ X ) would not exist and hence the OLS estimates

β̂ = (X ′ X )−1 X ′y could not be calculated.

Near multicollinearity is much more likely to occur in practice, and would

arise when there was a non-negligible, but not perfect, relationship be-

tween two or more of the explanatory variables. Note that a high correla-

tion between the dependent variable and one of the independent variables

is not multicollinearity.

Visually, we could think of the difference between near and perfect

multicollinearity as follows. Suppose that the variables x2t and x3t were

highly correlated. If we produced a scatter plot of x2t against x3t , then

perfect multicollinearity would correspond to all of the points lying ex-

actly on a straight line, while near multicollinearity would correspond to

the points lying close to the line, and the closer they were to the line

(taken altogether), the stronger would be the relationship between the

two variables.

4.8.1 Measuring near multicollinearity

Testing for multicollinearity is surprisingly difficult, and hence all that

is presented here is a simple method to investigate the presence or

otherwise of the most easily detected forms of near multicollinear-

ity. This method simply involves looking at the matrix of correlations
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between the individual variables. Suppose that a regression equation has

three explanatory variables (plus a constant term), and that the pair-wise

correlations between these explanatory variables are.

corr x2 x3 x4

x2 -- 0.2 0.8

x3 0.2 -- 0.3

x4 0.8 0.3 --

Clearly, if multicollinearity was suspected, the most likely culprit would

be a high correlation between x2 and x4. Of course, if the relationship

involves three or more variables that are collinear -- e.g. x2 + x3 ≈ x4 --

then multicollinearity would be very difficult to detect.

4.8.2 Problems if near multicollinearity is present but ignored

First, R2 will be high but the individual coefficients will have high stan-

dard errors, so that the regression ‘looks good’ as a whole4, but the in-

dividual variables are not significant. This arises in the context of very

closely related explanatory variables as a consequence of the difficulty in

observing the individual contribution of each variable to the overall fit

of the regression. Second, the regression becomes very sensitive to small

changes in the specification, so that adding or removing an explanatory

variable leads to large changes in the coefficient values or significances of

the other variables. Finally, near multicollinearity will thus make confi-

dence intervals for the parameters very wide, and significance tests might

therefore give inappropriate conclusions, and so make it difficult to draw

sharp inferences.

4.8.3 Solutions to the problem of multicollinearity

A number of alternative estimation techniques have been proposed that

are valid in the presence of multicollinearity -- for example, ridge re-

gression, or principal components. Principal components analysis was dis-

cussed briefly in an appendix to the previous chapter. Many researchers

do not use these techniques, however, as they can be complex, their prop-

erties are less well understood than those of the OLS estimator and, above

all, many econometricians would argue that multicollinearity is more a

problem with the data than with the model or estimation method.

4 Note that multicollinearity does not affect the value of R2 in a regression.
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Other, more ad hoc methods for dealing with the possible existence of

near multicollinearity include:

● Ignore it, if the model is otherwise adequate, i.e. statistically and in

terms of each coefficient being of a plausible magnitude and having an

appropriate sign. Sometimes, the existence of multicollinearity does not

reduce the t -ratios on variables that would have been significant without

the multicollinearity sufficiently to make them insignificant. It is worth

stating that the presence of near multicollinearity does not affect the

BLUE properties of the OLS estimator -- i.e. it will still be consistent,

unbiased and efficient since the presence of near multicollinearity does

not violate any of the CLRM assumptions 1--4. However, in the presence

of near multicollinearity, it will be hard to obtain small standard errors.

This will not matter if the aim of the model-building exercise is to

produce forecasts from the estimated model, since the forecasts will

be unaffected by the presence of near multicollinearity so long as this

relationship between the explanatory variables continues to hold over

the forecasted sample.

● Drop one of the collinear variables, so that the problem disappears.

However, this may be unacceptable to the researcher if there were strong

a priori theoretical reasons for including both variables in the model.

Also, if the removed variable was relevant in the data generating process

for y, an omitted variable bias would result (see section 4.10).

● Transform the highly correlated variables into a ratio and include

only the ratio and not the individual variables in the regression.

Again, this may be unacceptable if financial theory suggests that

changes in the dependent variable should occur following changes in

the individual explanatory variables, and not a ratio of them.

● Finally, as stated above, it is also often said that near multicollinear-

ity is more a problem with the data than with the model, so that there

is insufficient information in the sample to obtain estimates for all

of the coefficients. This is why near multicollinearity leads coefficient

estimates to have wide standard errors, which is exactly what would

happen if the sample size were small. An increase in the sample size

will usually lead to an increase in the accuracy of coefficient estimation

and consequently a reduction in the coefficient standard errors, thus

enabling the model to better dissect the effects of the various explana-

tory variables on the explained variable. A further possibility, therefore,

is for the researcher to go out and collect more data -- for example,

by taking a longer run of data, or switching to a higher frequency of
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sampling. Of course, it may be infeasible to increase the sample size

if all available data is being utilised already. A further method of in-

creasing the available quantity of data as a potential remedy for near

multicollinearity would be to use a pooled sample. This would involve

the use of data with both cross-sectional and time series dimensions (see

chapter 10).

4.8.4 Multicollinearity in EViews

For the Microsoft stock return example given above previously, a correla-

tion matrix for the independent variables can be constructed in EViews

by clicking Quick/Group Statistics/Correlations and then entering the

list of regressors (not including the regressand) in the dialog box that

appears:

ersandp dprod dcredit dinflation dmoney dspread rterm

A new window will be displayed that contains the correlation matrix of

the series in a spreadsheet format:

ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM

ERSANDP 1.000000 −0.096173 −0.012885 −0.013025 −0.033632 −0.038034 0.013764

DPROD −0.096173 1.000000 −0.002741 0.168037 0.121698 −0.073796 −0.042486

DCREDIT −0.012885 −0.002741 1.000000 0.071330 0.035290 0.025261 −0.062432

DINFLATION −0.013025 0.168037 0.071330 1.000000 0.006702 −0.169399 −0.006518

DMONEY −0.033632 0.121698 0.035290 0.006702 1.000000 −0.075082 0.170437

DSPREAD −0.038034 −0.073796 0.025261 −0.169399 −0.075082 1.000000 0.018458

RTERM 0.013764 −0.042486 −0.062432 −0.006518 0.170437 0.018458 1.000000

Do the results indicate any significant correlations between the inde-

pendent variables? In this particular case, the largest observed correlation

is 0.17 between the money supply and term structure variables and this

is sufficiently small that it can reasonably be ignored.

4.9 Adopting the wrong functional form

A further implicit assumption of the classical linear regression model is

that the appropriate ‘functional form’ is linear. This means that the ap-

propriate model is assumed to be linear in the parameters, and that in

the bivariate case, the relationship between y and x can be represented

by a straight line. However, this assumption may not always be upheld.

Whether the model should be linear can be formally tested using Ramsey’s

(1969) RESET test, which is a general test for misspecification of functional
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form. Essentially, the method works by using higher order terms of the

fitted values (e.g. ŷ2
t , ŷ3

t , etc.) in an auxiliary regression. The auxiliary re-

gression is thus one where yt , the dependent variable from the original

regression, is regressed on powers of the fitted values together with the

original explanatory variables

yt = α1 + α2 ŷ2
t + α3 ŷ3

t + · · · + αp ŷ
p
t +

∑

βi xi t + vt (4.51)

Higher order powers of the fitted values of y can capture a variety

of non-linear relationships, since they embody higher order powers and

cross-products of the original explanatory variables, e.g.

ŷ2
t = (β̂1 + β̂2x2t + β̂3x3t + · · · + β̂k xkt )

2 (4.52)

The value of R2 is obtained from the regression (4.51), and the test statis-

tic, given by TR2, is distributed asymptotically as a χ2(p − 1). Note that

the degrees of freedom for this test will be (p − 1) and not p. This arises

because p is the highest order term in the fitted values used in the aux-

iliary regression and thus the test will involve p − 1 terms, one for the

square of the fitted value, one for the cube, . . . , one for the pth power. If

the value of the test statistic is greater than the χ2 critical value, reject

the null hypothesis that the functional form was correct.

4.9.1 What if the functional form is found to be inappropriate?

One possibility would be to switch to a non-linear model, but the RESET

test presents the user with no guide as to what a better specification might

be! Also, non-linear models in the parameters typically preclude the use

of OLS, and require the use of a non-linear estimation technique. Some

non-linear models can still be estimated using OLS, provided that they are

linear in the parameters. For example, if the true model is of the form

yt = β1 + β2x2t + β3x2
2t + β4x3

2t + ut (4.53)

-- that is, a third order polynomial in x -- and the researcher assumes that

the relationship between yt and xt is linear (i.e. x2
2t and x3

2t are missing

from the specification), this is simply a special case of omitted variables,

with the usual problems (see section 4.10) and obvious remedy.

However, the model may be multiplicatively non-linear. A second possi-

bility that is sensible in this case would be to transform the data into

logarithms. This will linearise many previously multiplicative models

into additive ones. For example, consider again the exponential growth

model

yt = β1x
β2

t ut (4.54)
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Taking logs, this becomes

ln(yt ) = ln(β1) + β2 ln(xt ) + ln(ut ) (4.55)

or

Yt = α + β2 X t + vt (4.56)

where Yt = ln(yt ), α = ln(β1), X t = ln(xt ), vt = ln(ut ). Thus a simple loga-

rithmic transformation makes this model a standard linear bivariate re-

gression equation that can be estimated using OLS.

Loosely following the treatment given in Stock and Watson (2006), the

following list shows four different functional forms for models that are

either linear or can be made linear following a logarithmic transformation

to one or more of the dependent or independent variables, examining only

a bivariate specification for simplicity. Care is needed when interpreting

the coefficient values in each case.

(1) Linear model: yt = β1 + β2x2t + ut ; a 1-unit increase in x2t causes a β2-

unit increase in yt .

x2t

yt

(2) Log-linear: ln(yt ) = β1 + β2x2t + ut ; a 1-unit increase in x2t causes a

100 × β2% increase in yt .

x2t

ln yt

x2t

yt
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(3) Linear-log: yt = β1 + β2ln(x2t ) + ut ; a 1% increase in x2t causes a 0.01 ×

β2-unit increase in yt .

yt

In(x2t) x2t

yt

(4) Double log: ln(yt ) = β1 + β2ln(x2t ) + ut ; a 1% increase in x2t causes a β2%

increase in yt . Note that to plot y against x2 would be more complex

since the shape would depend on the size of β2.

ln(yt)

In(x2t)

Note also that we cannot use R2 or adjusted R2 to determine which

of these four types of model is most appropriate since the dependent

variables are different across some of the models.

4.9.2 RESET tests using EViews

Using EViews, the Ramsey RESET test is found in the View menu of the

regression window (for ‘Msoftreg’) under Stability tests/Ramsey RESET

test. . . . EViews will prompt you for the ‘number of fitted terms’, equivalent

to the number of powers of the fitted value to be used in the regression;

leave the default of 1 to consider only the square of the fitted values. The

Ramsey RESET test for this regression is in effect testing whether the rela-

tionship between the Microsoft stock excess returns and the explanatory
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variables is linear or not. The results of this test for one fitted term are

shown in the following table.

Ramsey RESET Test:

F-statistic 1.603573 Prob. F(1,241) 0.2066
Log likelihood ratio 1.671212 Prob. Chi-Square(1) 0.1961

Test Equation:
Dependent Variable: ERMSOFT
Method: Least Squares
Date: 08/29/07 Time: 09:54
Sample: 1986M05 2007M04
Included observations: 252

Coefficient Std. Error t-Statistic Prob.

C −0.531288 1.359686 −0.390743 0.6963
ERSANDP 1.639661 0.197469 8.303368 0.0000
DPROD 0.487139 0.452025 1.077681 0.2823

DCREDIT −5.99E-05 0.000144 −0.414772 0.6787
DINFLATION 5.030282 2.683906 1.874239 0.0621

DMONEY −1.413747 0.643937 −2.195475 0.0291
DSPREAD 8.488655 12.21231 0.695090 0.4877
RTERM 6.692483 2.994476 2.234943 0.0263

FEB89DUM −94.39106 23.62309 −3.995712 0.0001
FEB03DUM −105.0831 31.71804 −3.313037 0.0011
FITTED∧2 0.007732 0.006106 1.266323 0.2066

R-squared 0.363199 Mean dependent var −0.420803
Adjusted R-squared 0.336776 S.D. dependent var 15.41135
S.E. of regression 12.55078 Akaike info criterion 7.940113
Sum squared resid 37962.85 Schwarz criterion 8.094175
Log likelihood −989.4542 Hannan-Quinn criter. 8.002104
F-statistic 13.74543 Durbin-Watson stat 2.090304
Prob(F-statistic) 0.000000

Both F− and χ2 versions of the test are presented, and it can be seen

that there is no apparent non-linearity in the regression equation and so

it would be concluded that the linear model for the Microsoft returns is

appropriate.

4.10 Omission of an important variable

What would be the effects of excluding from the estimated regression a

variable that is a determinant of the dependent variable? For example,
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suppose that the true, but unknown, data generating process is repre-

sented by

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + ut (4.57)

but the researcher estimated a model of the form

yt = β1 + β2 x2t + β3 x3t + β4 x4t + ut (4.58)

so that the variable x5t is omitted from the model. The consequence would

be that the estimated coefficients on all the other variables will be biased

and inconsistent unless the excluded variable is uncorrelated with all

the included variables. Even if this condition is satisfied, the estimate of

the coefficient on the constant term will be biased, which would imply

that any forecasts made from the model would be biased. The standard

errors will also be biased (upwards), and hence hypothesis tests could yield

inappropriate inferences. Further intuition is offered in Dougherty (1992,

pp. 168--73).

4.11 Inclusion of an irrelevant variable

Suppose now that the researcher makes the opposite error to section 4.10,

i.e. that the true DGP was represented by

yt = β1 + β2 x2t + β3 x3t + β4 x4t + ut (4.59)

but the researcher estimates a model of the form

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + ut (4.60)

thus incorporating the superfluous or irrelevant variable x5t . As x5t is

irrelevant, the expected value of β5 is zero, although in any practical

application, its estimated value is very unlikely to be exactly zero. The

consequence of including an irrelevant variable would be that the coeffi-

cient estimators would still be consistent and unbiased, but the estima-

tors would be inefficient. This would imply that the standard errors for

the coefficients are likely to be inflated relative to the values which they

would have taken if the irrelevant variable had not been included. Vari-

ables which would otherwise have been marginally significant may no

longer be so in the presence of irrelevant variables. In general, it can also

be stated that the extent of the loss of efficiency will depend positively

on the absolute value of the correlation between the included irrelevant

variable and the other explanatory variables.
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Summarising the last two sections it is evident that when trying to

determine whether to err on the side of including too many or too few

variables in a regression model, there is an implicit trade-off between in-

consistency and efficiency; many researchers would argue that while in an

ideal world, the model will incorporate precisely the correct variables -- no

more and no less -- the former problem is more serious than the latter and

therefore in the real world, one should err on the side of incorporating

marginally significant variables.

4.12 Parameter stability tests

So far, regressions of a form such as

yt = β1 + β2x2t + β3x3t + ut (4.61)

have been estimated. These regressions embody the implicit assumption

that the parameters (β1, β2 and β3) are constant for the entire sample, both

for the data period used to estimate the model, and for any subsequent

period used in the construction of forecasts.

This implicit assumption can be tested using parameter stability tests.

The idea is essentially to split the data into sub-periods and then to esti-

mate up to three models, for each of the sub-parts and for all the data

and then to ‘compare’ the RSS of each of the models. There are two types

of test that will be considered, namely the Chow (analysis of variance) test

and predictive failure tests.

4.12.1 The Chow test

The steps involved are shown in box 4.7.

Box 4.7 Conducting a Chow test

(1) Split the data into two sub-periods. Estimate the regression over the whole period

and then for the two sub-periods separately (3 regressions). Obtain the RSS for

each regression.

(2) The restricted regression is now the regression for the whole period while the

‘unrestricted regression’ comes in two parts: one for each of the sub-samples. It is

thus possible to form an F-test, which is based on the difference between the

RSSs. The statistic is

test statistic =
RSS − ( RSS1 + RSS2)

RSS1 + RSS2

×
T − 2k

k
(4.62)

where RSS = residual sum of squares for whole sample
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RSS1 = residual sum of squares for sub-sample 1

RSS2 = residual sum of squares for sub-sample 2

T = number of observations

2k = number of regressors in the ‘unrestricted’ regression (since it comes in two

parts)

k = number of regressors in (each) ‘unrestricted’ regression

The unrestricted regression is the one where the restriction has not been imposed

on the model. Since the restriction is that the coefficients are equal across the

sub-samples, the restricted regression will be the single regression for the whole

sample. Thus, the test is one of how much the residual sum of squares for

the whole sample (RSS) is bigger than the sum of the residual sums of squares for

the two sub-samples (RSS1 + RSS2). If the coefficients do not change much

between the samples, the residual sum of squares will not rise much upon

imposing the restriction. Thus the test statistic in (4.62) can be considered a

straightforward application of the standard F-test formula discussed in chapter 3.

The restricted residual sum of squares in (4.62) is RSS, while the unrestricted

residual sum of squares is (RSS1 + RSS2). The number of restrictions is equal to the

number of coefficients that are estimated for each of the regressions, i.e. k. The

number of regressors in the unrestricted regression (including the constants) is 2k,

since the unrestricted regression comes in two parts, each with k regressors.

(3) Perform the test. If the value of the test statistic is greater than the critical value

from the F-distribution, which is an F(k, T −2k), then reject the null hypothesis that

the parameters are stable over time.

Note that it is also possible to use a dummy variables approach to calcu-

lating both Chow and predictive failure tests. In the case of the Chow test,

the unrestricted regression would contain dummy variables for the inter-

cept and for all of the slope coefficients (see also chapter 9). For example,

suppose that the regression is of the form

yt = β1 + β2x2t + β3x3t + ut (4.63)

If the split of the total of T observations is made so that the sub-samples

contain T1 and T2 observations (where T1 + T2 = T ), the unrestricted re-

gression would be given by

yt = β1 + β2x2t + β3x3t + β4 Dt + β5 Dt x2t + β6 Dt x3t + vt (4.64)

where Dt = 1 for t ∈ T1 and zero otherwise. In other words, Dt takes the

value one for observations in the first sub-sample and zero for observations

in the second sub-sample. The Chow test viewed in this way would then be

a standard F-test of the joint restriction H0: β4 = 0 and β5 = 0 and β6 = 0,

with (4.64) and (4.63) being the unrestricted and restricted regressions,

respectively.
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Example 4.4

Suppose that it is now January 1993. Consider the following regression

for the standard CAPM β for the returns on a stock

rgt = α + βrMt + ut (4.65)

where rgt and rMt are excess returns on Glaxo shares and on a market

portfolio, respectively. Suppose that you are interested in estimating beta

using monthly data from 1981 to 1992, to aid a stock selection decision.

Another researcher expresses concern that the October 1987 stock market

crash fundamentally altered the risk--return relationship. Test this conjec-

ture using a Chow test. The model for each sub-period is

1981M1--1987M10

r̂gt = 0.24 + 1.2rMt T = 82 RSS1 = 0.03555 (4.66)

1987M11--1992M12

r̂gt = 0.68 + 1.53rMt T = 62 RSS2 = 0.00336 (4.67)

1981M1--1992M12

r̂gt = 0.39 + 1.37rMt T = 144 RSS = 0.0434 (4.68)

The null hypothesis is

H0 : α1 = α2 and β1 = β2

where the subscripts 1 and 2 denote the parameters for the first and

second sub-samples, respectively. The test statistic will be given by

test statistic =
0.0434 − (0.0355 + 0.00336)

0.0355 + 0.00336
×

144 − 4

2
(4.69)

= 7.698

The test statistic should be compared with a 5%, F (2,140) = 3.06. H0 is

rejected at the 5% level and hence it is concluded that the restriction

that the coefficients are the same in the two periods cannot be employed.

The appropriate modelling response would probably be to employ only

the second part of the data in estimating the CAPM beta relevant for

investment decisions made in early 1993.

4.12.2 The predictive failure test

A problem with the Chow test is that it is necessary to have enough data

to do the regression on both sub-samples, i.e. T1 ≫ k, T2 ≫ k. This may not
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hold in the situation where the total number of observations available is

small. Even more likely is the situation where the researcher would like

to examine the effect of splitting the sample at some point very close to

the start or very close to the end of the sample. An alternative formula-

tion of a test for the stability of the model is the predictive failure test,

which requires estimation for the full sample and one of the sub-samples

only. The predictive failure test works by estimating the regression over a

‘long’ sub-period (i.e. most of the data) and then using those coefficient

estimates for predicting values of y for the other period. These predic-

tions for y are then implicitly compared with the actual values. Although

it can be expressed in several different ways, the null hypothesis for this

test is that the prediction errors for all of the forecasted observations are

zero.

To calculate the test:

● Run the regression for the whole period (the restricted regression) and

obtain the RSS.

● Run the regression for the ‘large’ sub-period and obtain the RSS (called

RSS1). Note that in this book, the number of observations for the long

estimation sub-period will be denoted by T1 (even though it may come

second). The test statistic is given by

test statistic =
RSS − RSS1

RSS1

×
T1 − k

T2

(4.70)

where T2 = number of observations that the model is attempting to

‘predict’. The test statistic will follow an F(T2, T1 − k).

For an intuitive interpretation of the predictive failure test statistic for-

mulation, consider an alternative way to test for predictive failure using a

regression containing dummy variables. A separate dummy variable would

be used for each observation that was in the prediction sample. The un-

restricted regression would then be the one that includes the dummy

variables, which will be estimated using all T observations, and will have

(k + T2) regressors (the k original explanatory variables, and a dummy

variable for each prediction observation, i.e. a total of T2 dummy vari-

ables). Thus the numerator of the last part of (4.70) would be the total

number of observations (T ) minus the number of regressors in the unre-

stricted regression (k + T2). Noting also that T − (k + T2) = (T1 − k), since

T1 + T2 = T, this gives the numerator of the last term in (4.70). The re-

stricted regression would then be the original regression containing the

explanatory variables but none of the dummy variables. Thus the number
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of restrictions would be the number of observations in the prediction

period, which would be equivalent to the number of dummy variables

included in the unrestricted regression, T2.

To offer an illustration, suppose that the regression is again of the form

of (4.63), and that the last three observations in the sample are used for

a predictive failure test. The unrestricted regression would include three

dummy variables, one for each of the observations in T2

rgt = α + βrMt + γ1 D1t + γ2 D2t + γ3 D3t + ut (4.71)

where D1t = 1 for observation T − 2 and zero otherwise, D2t = 1 for

observation T − 1 and zero otherwise, D3t = 1 for observation T and zero

otherwise. In this case, k = 2, and T2 = 3. The null hypothesis for the

predictive failure test in this regression is that the coefficients on all of

the dummy variables are zero (i.e. H0 : γ1 = 0 and γ2 = 0 and γ3 = 0). Both

approaches to conducting the predictive failure test described above are

equivalent, although the dummy variable regression is likely to take more

time to set up.

However, for both the Chow and the predictive failure tests, the dummy

variables approach has the one major advantage that it provides the

user with more information. This additional information comes from

the fact that one can examine the significances of the coefficients on

the individual dummy variables to see which part of the joint null hy-

pothesis is causing a rejection. For example, in the context of the Chow

regression, is it the intercept or the slope coefficients that are signifi-

cantly different across the two sub-samples? In the context of the pre-

dictive failure test, use of the dummy variables approach would show

for which period(s) the prediction errors are significantly different from

zero.

4.12.3 Backward versus forward predictive failure tests

There are two types of predictive failure tests -- forward tests and back-

wards tests. Forward predictive failure tests are where the last few obser-

vations are kept back for forecast testing. For example, suppose that obser-

vations for 1980Q1--2004Q4 are available. A forward predictive failure test

could involve estimating the model over 1980Q1--2003Q4 and forecasting

2004Q1--2004Q4. Backward predictive failure tests attempt to ‘back-cast’

the first few observations, e.g. if data for 1980Q1--2004Q4 are available,

and the model is estimated over 1971Q1--2004Q4 and back-cast 1980Q1--

1980Q4. Both types of test offer further evidence on the stability of the

regression relationship over the whole sample period.
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Example 4.5

Suppose that the researcher decided to determine the stability of the

estimated model for stock returns over the whole sample in example 4.4

by using a predictive failure test of the last two years of observations. The

following models would be estimated:

1981M1--1992M12 (whole sample)

r̂gt = 0.39 + 1.37rMt T = 144 RSS = 0.0434 (4.72)

1981M1--1990M12 (‘long sub-sample’)

r̂gt = 0.32 + 1.31rMt T = 120 RSS1 = 0.0420 (4.73)

Can this regression adequately ‘forecast’ the values for the last two years?

The test statistic would be given by

test statistic =
0.0434 − 0.0420

0.0420
×

120 − 2

24
(4.74)

= 0.164

Compare the test statistic with an F (24,118) = 1.66 at the 5% level. So

the null hypothesis that the model can adequately predict the last few

observations would not be rejected. It would thus be concluded that the

model did not suffer from predictive failure during the 1991M1--1992M12

period.

4.12.4 How can the appropriate sub-parts to use be decided?

As a rule of thumb, some or all of the following methods for selecting

where the overall sample split occurs could be used:

● Plot the dependent variable over time and split the data accordingly to

any obvious structural changes in the series, as illustrated in figure 4.14.
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It is clear that y in figure 4.14 underwent a large fall in its value

around observation 175, and it is possible that this may have caused

a change in its behaviour. A Chow test could be conducted with the

sample split at this observation.

● Split the data according to any known important historical events (e.g. a

stock market crash, change in market microstructure, new government

elected). The argument is that a major change in the underlying envi-

ronment in which y is measured is more likely to cause a structural

change in the model’s parameters than a relatively trivial change.

● Use all but the last few observations and do a forwards predictive failure

test on those.

● Use all but the first few observations and do a backwards predictive failure

test on those.

If a model is good, it will survive a Chow or predictive failure test with

any break date. If the Chow or predictive failure tests are failed, two ap-

proaches could be adopted. Either the model is respecified, for example,

by including additional variables, or separate estimations are conducted

for each of the sub-samples. On the other hand, if the Chow and predictive

failure tests show no rejections, it is empirically valid to pool all of the

data together in a single regression. This will increase the sample size and

therefore the number of degrees of freedom relative to the case where the

sub-samples are used in isolation.

4.12.5 The QLR test

The Chow and predictive failure tests will work satisfactorily if the date

of a structural break in a financial time series can be specified. But more

often, a researcher will not know the break date in advance, or may know

only that it lies within a given range (sub-set) of the sample period. In

such circumstances, a modified version of the Chow test, known as the

Quandt likelihood ratio (QLR) test, named after Quandt (1960), can be used

instead. The test works by automatically computing the usual Chow F -

test statistic repeatedly with different break dates, then the break date

giving the largest F -statistic value is chosen. While the test statistic is

of the F -variety, it will follow a non-standard distribution rather than

an F -distribution since we are selecting the largest from a number of

F -statistics rather than examining a single one.

The test is well behaved only when the range of possible break dates is

sufficiently far from the end points of the whole sample, so it is usual

to ‘‘trim’’ the sample by (typically) 5% at each end. To illustrate, suppose

that the full sample comprises 200 observations; then we would test for
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a structural break between observations 31 and 170 inclusive. The criti-

cal values will depend on how much of the sample is trimmed away, the

number of restrictions under the null hypothesis (the number of regres-

sors in the original regression as this is effectively a Chow test) and the

significance level.

4.12.6 Stability tests based on recursive estimation

An alternative to the QLR test for use in the situation where a researcher

believes that a series may contain a structural break but is unsure of

the date is to perform a recursive estimation. This is sometimes known

as recursive least squares (RLS). The procedure is appropriate only for time-

series data or cross-sectional data that have been ordered in some sensible

way (for example, a sample of annual stock returns, ordered by market

capitalisation). Recursive estimation simply involves starting with a sub-

sample of the data, estimating the regression, then sequentially adding

one observation at a time and re-running the regression until the end of

the sample is reached. It is common to begin the initial estimation with

the very minimum number of observations possible, which will be k + 1.

So at the first step, the model is estimated using observations 1 to k + 1;

at the second step, observations 1 to k + 2 are used and so on; at the final

step, observations 1 to T are used. The final result will be the production

of T − k separate estimates of every parameter in the regression model.

It is to be expected that the parameter estimates produced near the

start of the recursive procedure will appear rather unstable since these

estimates are being produced using so few observations, but the key ques-

tion is whether they then gradually settle down or whether the volatility

continues through the whole sample. Seeing the latter would be an indi-

cation of parameter instability.

It should be evident that RLS in itself is not a statistical test for parame-

ter stability as such, but rather it provides qualitative information which

can be plotted and thus gives a very visual impression of how stable the

parameters appear to be. But two important stability tests, known as the

CUSUM and CUSUMSQ tests, are derived from the residuals of the recur-

sive estimation (known as the recursive residuals).5 The CUSUM statistic

is based on a normalised (i.e. scaled) version of the cumulative sums of

the residuals. Under the null hypothesis of perfect parameter stability, the

CUSUM statistic is zero however many residuals are included in the sum

5 Strictly, the CUSUM and CUSUMSQ statistics are based on the one-step ahead prediction

errors -- i.e. the differences between yt and its predicted value based on the parameters

estimated at time t − 1. See Greene (2002, chapter 7) for full technical details.
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(because the expected value of a disturbance is always zero). A set of ±2

standard error bands is usually plotted around zero and any statistic lying

outside the bands is taken as evidence of parameter instability.

The CUSUMSQ test is based on a normalised version of the cumulative

sums of squared residuals. The scaling is such that under the null hy-

pothesis of parameter stability, the CUSUMSQ statistic will start at zero

and end the sample with a value of 1. Again, a set of ±2 standard error

bands is usually plotted around zero and any statistic lying outside these

is taken as evidence of parameter instability.

4.12.7 Stability tests in EViews

In EViews, to access the Chow test, click on the View/Stability Tests/Chow

Breakpoint Test . . . in the ‘Msoftreg’ regression window. In the new win-

dow that appears, enter the date at which it is believed that a breakpoint

occurred. Input 1996:01 in the dialog box in screenshot 4.4 to split the

sample roughly in half. Note that it is not possible to conduct a Chow

test or a parameter stability test when there are outlier dummy variables

Screenshot 4.4

Chow test for

parameter stability
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in the regression. This occurs because when the sample is split into two

parts, the dummy variable for one of the parts will have values of zero for

all observations, which would thus cause perfect multicollinearity with

the column of ones that is used for the constant term. So ensure that the

Chow test is performed using the regression containing all of the explana-

tory variables except the dummies. By default, EViews allows the values of

all the parameters to vary across the two sub-samples in the unrestricted

regressions, although if we wanted, we could force some of the parameters

to be fixed across the two sub-samples.

EViews gives three versions of the test statistics, as shown in the follow-

ing table.

Chow Breakpoint Test: 1996M01
Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables
Equation Sample: 1986M05 2007M04

F-statistic 0.581302 Prob. F(8,236) 0.7929
Log likelihood ratio 4.917407 Prob. Chi-Square(8) 0.7664
Wald Statistic 4.650416 Prob. Chi-Square(8) 0.7942

The first version of the test is the familiar F -test, which computes a

restricted version and an unrestricted version of the auxiliary regression

and ‘compares’ the residual sums of squares, while the second and third

versions are based on χ2 formulations. In this case, all three test statistics

are smaller than their critical values and so the null hypothesis that

the parameters are constant across the two sub-samples is not rejected.

Note that the Chow forecast (i.e. the predictive failure) test could also be

employed by clicking on the View/Stability Tests/Chow Forecast Test . . .

in the regression window. Determine whether the model can predict the

last four observations by entering 2007:01 in the dialog box. The results

of this test are given in the following table.

Chow Forecast Test: Forecast from 2007M01 to 2007M04

F-statistic 0.056576 Prob. F(4,240) 0.9940
Log likelihood ratio 0.237522 Prob. Chi-Square(4) 0.9935

The table indicates that the model can indeed adequately predict the

2007 observations. Thus the conclusions from both forms of the test are

that there is no evidence of parameter instability. However, the conclusion

should really be that the parameters are stable with respect to these partic-

ular break dates. It is important to note that for the model to be deemed
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adequate, it needs to be stable with respect to any break dates that we

may choose. A good way to test this is to use one of the tests based on

recursive estimation.

Click on View/Stability Tests/Recursive Estimates (OLS Only). . . . You will

be presented with a menu as shown in screenshot 4.5 containing a number

of options including the CUSUM and CUSUMSQ tests described above and

also the opportunity to plot the recursively estimated coefficients.

Screenshot 4.5

Plotting recursive

coefficient

estimates

First, check the box next to Recursive coefficients and then recur-

sive estimates will be given for all those parameters listed in the ‘Co-

efficient display list’ box, which by default is all of them. Click OK and

you will be presented with eight small figures, one for each parameter,

showing the recursive estimates and ±2 standard error bands around

them. As discussed above, it is bound to take some time for the co-

efficients to stabilise since the first few sets are estimated using such

small samples. Given this, the parameter estimates in all cases are re-

markably stable over time. Now go back to View/Stability Tests/Recursive

Estimates (OLS Only) . . . . and choose CUSUM Test. The resulting graph is in

screenshot 4.6.

Since the line is well within the confidence bands, the conclusion would

be again that the null hypothesis of stability is not rejected. Now repeat

the above but using the CUSUMSQ test rather than CUSUM. Do we retain

the same conclusion? (No) Why?



Classical linear regression model assumptions and diagnostic tests 191

60

40

20

0

−20

−40

−60
88 90 9492 96 98 00 02 04 06

CUSUM 5% Significance

Screenshot 4.6

CUSUM test graph

4.13 A strategy for constructing econometric models and a
discussion of model-building philosophies

The objective of many econometric model-building exercises is to build a

statistically adequate empirical model which satisfies the assumptions of

the CLRM, is parsimonious, has the appropriate theoretical interpretation,

and has the right ‘shape’ (i.e. all signs on coefficients are ‘correct’ and all

sizes of coefficients are ‘correct’).

But how might a researcher go about achieving this objective? A com-

mon approach to model building is the ‘LSE’ or general-to-specific method-

ology associated with Sargan and Hendry. This approach essentially in-

volves starting with a large model which is statistically adequate and re-

stricting and rearranging the model to arrive at a parsimonious final for-

mulation. Hendry’s approach (see Gilbert, 1986) argues that a good model

is consistent with the data and with theory. A good model will also encom-

pass rival models, which means that it can explain all that rival models

can and more. The Hendry methodology suggests the extensive use of

diagnostic tests to ensure the statistical adequacy of the model.

An alternative philosophy of econometric model-building, which pre-

dates Hendry’s research, is that of starting with the simplest model and

adding to it sequentially so that it gradually becomes more complex

and a better description of reality. This approach, associated principally

with Koopmans (1937), is sometimes known as a ‘specific-to-general’ or
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‘bottoms-up’ modelling approach. Gilbert (1986) termed this the ‘Average

Economic Regression’ since most applied econometric work had been tack-

led in that way. This term was also having a joke at the expense of a top

economics journal that published many papers using such a methodology.

Hendry and his co-workers have severely criticised this approach, mainly

on the grounds that diagnostic testing is undertaken, if at all, almost as

an after-thought and in a very limited fashion. However, if diagnostic tests

are not performed, or are performed only at the end of the model-building

process, all earlier inferences are potentially invalidated. Moreover, if the

specific initial model is generally misspecified, the diagnostic tests them-

selves are not necessarily reliable in indicating the source of the prob-

lem. For example, if the initially specified model omits relevant variables

which are themselves autocorrelated, introducing lags of the included

variables would not be an appropriate remedy for a significant DW test

statistic. Thus the eventually selected model under a specific-to-general

approach could be sub-optimal in the sense that the model selected using

a general-to-specific approach might represent the data better. Under the

Hendry approach, diagnostic tests of the statistical adequacy of the model

come first, with an examination of inferences for financial theory drawn

from the model left until after a statistically adequate model has been

found.

According to Hendry and Richard (1982), a final acceptable model should

satisfy several criteria (adapted slightly here). The model should:

● be logically plausible

● be consistent with underlying financial theory, including satisfying any

relevant parameter restrictions

● have regressors that are uncorrelated with the error term

● have parameter estimates that are stable over the entire sample

● have residuals that are white noise (i.e. completely random and exhibit-

ing no patterns)

● be capable of explaining the results of all competing models and more.

The last of these is known as the encompassing principle. A model that

nests within it a smaller model always trivially encompasses it. But a small

model is particularly favoured if it can explain all of the results of a larger

model; this is known as parsimonious encompassing.

The advantages of the general-to-specific approach are that it is statis-

tically sensible and also that the theory on which the models are based

usually has nothing to say about the lag structure of a model. Therefore,

the lag structure incorporated in the final model is largely determined

by the data themselves. Furthermore, the statistical consequences from
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excluding relevant variables are usually considered more serious than

those from including irrelevant variables.

The general-to-specific methodology is conducted as follows. The first

step is to form a ‘large’ model with lots of variables on the RHS. This is

known as a generalised unrestricted model (GUM), which should originate

from financial theory, and which should contain all variables thought to

influence the dependent variable. At this stage, the researcher is required

to ensure that the model satisfies all of the assumptions of the CLRM.

If the assumptions are violated, appropriate actions should be taken to

address or allow for this, e.g. taking logs, adding lags, adding dummy

variables.

It is important that the steps above are conducted prior to any hypoth-

esis testing. It should also be noted that the diagnostic tests presented

above should be cautiously interpreted as general rather than specific

tests. In other words, rejection of a particular diagnostic test null hypoth-

esis should be interpreted as showing that there is something wrong with

the model. So, for example, if the RESET test or White’s test show a rejec-

tion of the null, such results should not be immediately interpreted as

implying that the appropriate response is to find a solution for inappro-

priate functional form or heteroscedastic residuals, respectively. It is quite

often the case that one problem with the model could cause several as-

sumptions to be violated simultaneously. For example, an omitted variable

could cause failures of the RESET, heteroscedasticity and autocorrelation

tests. Equally, a small number of large outliers could cause non-normality

and residual autocorrelation (if they occur close together in the sample)

and heteroscedasticity (if the outliers occur for a narrow range of the

explanatory variables). Moreover, the diagnostic tests themselves do not

operate optimally in the presence of other types of misspecification since

they essentially assume that the model is correctly specified in all other

respects. For example, it is not clear that tests for heteroscedasticity will

behave well if the residuals are autocorrelated.

Once a model that satisfies the assumptions of the CLRM has been ob-

tained, it could be very big, with large numbers of lags and indepen-

dent variables. The next stage is therefore to reparameterise the model by

knocking out very insignificant regressors. Also, some coefficients may be

insignificantly different from each other, so that they can be combined.

At each stage, it should be checked whether the assumptions of the CLRM

are still upheld. If this is the case, the researcher should have arrived

at a statistically adequate empirical model that can be used for testing

underlying financial theories, forecasting future values of the dependent

variable, or for formulating policies.



194 Introductory Econometrics for Finance

However, needless to say, the general-to-specific approach also has its

critics. For small or moderate sample sizes, it may be impractical. In such

instances, the large number of explanatory variables will imply a small

number of degrees of freedom. This could mean that none of the variables

is significant, especially if they are highly correlated. This being the case, it

would not be clear which of the original long list of candidate regressors

should subsequently be dropped. Moreover, in any case the decision on

which variables to drop may have profound implications for the final

specification of the model. A variable whose coefficient was not significant

might have become significant at a later stage if other variables had been

dropped instead.

In theory, sensitivity of the final specification to the various possible

paths of variable deletion should be carefully checked. However, this could

imply checking many (perhaps even hundreds) of possible specifications. It

could also lead to several final models, none of which appears noticeably

better than the others.

The general-to-specific approach, if followed faithfully to the end, will

hopefully lead to a statistically valid model that passes all of the usual

model diagnostic tests and contains only statistically significant regres-

sors. However, the final model could also be a bizarre creature that is

devoid of any theoretical interpretation. There would also be more than

just a passing chance that such a model could be the product of a statisti-

cally vindicated data mining exercise. Such a model would closely fit the

sample of data at hand, but could fail miserably when applied to other

samples if it is not based soundly on theory.

There now follows another example of the use of the classical linear

regression model in finance, based on an examination of the determinants

of sovereign credit ratings by Cantor and Packer (1996).

4.14 Determinants of sovereign credit ratings

4.14.1 Background

Sovereign credit ratings are an assessment of the riskiness of debt issued

by governments. They embody an estimate of the probability that the bor-

rower will default on her obligation. Two famous US ratings agencies,

Moody’s and Standard and Poor’s, provide ratings for many governments.

Although the two agencies use different symbols to denote the given risk-

iness of a particular borrower, the ratings of the two agencies are com-

parable. Gradings are split into two broad categories: investment grade

and speculative grade. Investment grade issuers have good or adequate

payment capacity, while speculative grade issuers either have a high
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degree of uncertainty about whether they will make their payments, or

are already in default. The highest grade offered by the agencies, for the

highest quality of payment capacity, is ‘triple A’, which Moody’s denotes

‘Aaa’ and Standard and Poor’s denotes ‘AAA’. The lowest grade issued to a

sovereign in the Cantor and Packer sample was B3 (Moody’s) or B− (Stan-

dard and Poor’s). Thus the number of grades of debt quality from the

highest to the lowest given to governments in their sample is 16.

The central aim of Cantor and Packer’s paper is an attempt to explain

and model how the agencies arrived at their ratings. Although the ratings

themselves are publicly available, the models or methods used to arrive

at them are shrouded in secrecy. The agencies also provide virtually no

explanation as to what the relative weights of the factors that make up the

rating are. Thus, a model of the determinants of sovereign credit ratings

could be useful in assessing whether the ratings agencies appear to have

acted rationally. Such a model could also be employed to try to predict

the rating that would be awarded to a sovereign that has not previously

been rated and when a re-rating is likely to occur. The paper continues,

among other things, to consider whether ratings add to publicly available

information, and whether it is possible to determine what factors affect

how the sovereign yields react to ratings announcements.

4.14.2 Data

Cantor and Packer (1996) obtain a sample of government debt ratings for

49 countries as of September 1995 that range between the above grad-

ings. The ratings variable is quantified, so that the highest credit quality

(Aaa/AAA) in the sample is given a score of 16, while the lowest rated

sovereign in the sample is given a score of 1 (B3/B−). This score forms the

dependent variable. The factors that are used to explain the variability

in the ratings scores are macroeconomic variables. All of these variables

embody factors that are likely to influence a government’s ability and

willingness to service its debt costs. Ideally, the model would also include

proxies for socio-political factors, but these are difficult to measure ob-

jectively and so are not included. It is not clear in the paper from where

the list of factors was drawn. The included variables (with their units of

measurement) are:

● Per capita income (in 1994 thousand US dollars). Cantor and Packer ar-

gue that per capita income determines the tax base, which in turn in-

fluences the government’s ability to raise revenue.

● GDP growth (annual 1991--4 average, %). The growth rate of increase in

GDP is argued to measure how much easier it will become to service

debt costs in the future.
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● Inflation (annual 1992--4 average, %). Cantor and Packer argue that high

inflation suggests that inflationary money financing will be used to

service debt when the government is unwilling or unable to raise the

required revenue through the tax system.

● Fiscal balance (average annual government budget surplus as a propor-

tion of GDP 1992--4, %). Again, a large fiscal deficit shows that the

government has a relatively weak capacity to raise additional revenue

and to service debt costs.

● External balance (average annual current account surplus as a proportion

of GDP 1992--4, %). Cantor and Packer argue that a persistent current

account deficit leads to increasing foreign indebtedness, which may be

unsustainable in the long run.

● External debt (foreign currency debt as a proportion of exports in 1994,

%). Reasoning as for external balance (which is the change in external

debt over time).

● Dummy for economic development (=1 for a country classified by the IMF as

developed, 0 otherwise). Cantor and Packer argue that credit ratings

agencies perceive developing countries as relatively more risky beyond

that suggested by the values of the other factors listed above.

● Dummy for default history (=1 if a country has defaulted, 0 otherwise).

It is argued that countries that have previously defaulted experience a

large fall in their credit rating.

The income and inflation variables are transformed to their logarithms.

The model is linear and estimated using OLS. Some readers of this book

who have a background in econometrics will note that strictly, OLS is not

an appropriate technique when the dependent variable can take on only

one of a certain limited set of values (in this case, 1, 2, 3, . . . 16). In such

applications, a technique such as ordered probit (not covered in this text)

would usually be more appropriate. Cantor and Packer argue that any

approach other than OLS is infeasible given the relatively small sample

size (49), and the large number (16) of ratings categories.

The results from regressing the rating value on the variables listed above

are presented in their exhibit 5, adapted and presented here as table 4.2.

Four regressions are conducted, each with identical independent vari-

ables but a different dependent variable. Regressions are conducted for

the rating score given by each agency separately, with results presented

in columns (4) and (5) of table 4.2. Occasionally, the ratings agencies give

different scores to a country -- for example, in the case of Italy, Moody’s

gives a rating of ‘A1’, which would generate a score of 12 on a 16-scale.

Standard and Poor’s (S and P), on the other hand, gives a rating of ‘AA’,
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Table 4.2 Determinants and impacts of sovereign credit ratings

Dependent variable

Explanatory Expected Average Moody’s S&P Difference
variable sign rating rating rating Moody’s/S&P
(1) (2) (3) (4) (5) (6)

Intercept ? 1.442 3.408 −0.524 3.932∗∗

(0.663) (1.379) (−0.223) (2.521)

Per capita income + 1.242∗∗∗ 1.027∗∗∗ 1.458∗∗∗ −0.431∗∗∗

(5.302) (4.041) (6.048) (−2.688)

GDP growth + 0.151 0.130 0.171∗∗ −0.040
(1.935) (1.545) (2.132) (0.756)

Inflation − −0.611∗∗∗ −0.630∗∗∗ −0.591∗∗∗ −0.039
(−2.839) (−2.701) (−2.671) (−0.265)

Fiscal balance + 0.073 0.049 0.097∗ −0.048
(1.324) (0.818) (1.71) (−1.274)

External balance + 0.003 0.006 0.001 0.006
(0.314) (0.535) (0.046) (0.779)

External debt − −0.013∗∗∗ −0.015∗∗∗ −0.011∗∗∗ −0.004∗∗∗

(−5.088) (−5.365) (−4.236) (−2.133)

Development dummy + 2.776∗∗∗ 2.957∗∗∗ 2.595∗∗∗ 0.362
(4.25) (4.175) (3.861) (0.81)

Default dummy − −2.042∗∗∗ −1.63∗∗ −2.622∗∗∗ 1.159∗∗∗

(−3.175) (−2.097) (−3.962) (2.632)

Adjusted R2 0.924 0.905 0.926 0.836

Notes: t -ratios in parentheses; ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and

1% levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional

Investor.

which would score 14 on the 16-scale, two gradings higher. Thus a regres-

sion with the average score across the two agencies, and with the differ-

ence between the two scores as dependent variables, is also conducted,

and presented in columns (3) and (6), respectively of table 4.2.

4.14.3 Interpreting the models

The models are difficult to interpret in terms of their statistical adequacy,

since virtually no diagnostic tests have been undertaken. The values of

the adjusted R2, at over 90% for each of the three ratings regressions,

are high for cross-sectional regressions, indicating that the model seems

able to capture almost all of the variability of the ratings about their
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mean values across the sample. There does not appear to be any attempt

at reparameterisation presented in the paper, so it is assumed that the

authors reached this set of models after some searching.

In this particular application, the residuals have an interesting interpre-

tation as the difference between the actual and fitted ratings. The actual

ratings will be integers from 1 to 16, although the fitted values from the

regression and therefore the residuals can take on any real value. Cantor

and Packer argue that the model is working well as no residual is bigger

than 3, so that no fitted rating is more than three categories out from the

actual rating, and only four countries have residuals bigger than two cat-

egories. Furthermore, 70% of the countries have ratings predicted exactly

(i.e. the residuals are less than 0.5 in absolute value).

Now, turning to interpret the models from a financial perspective, it is

of interest to investigate whether the coefficients have their expected signs

and sizes. The expected signs for the regression results of columns (3)--(5)

are displayed in column (2) of table 4.2 (as determined by this author).

As can be seen, all of the coefficients have their expected signs, although

the fiscal balance and external balance variables are not significant or are

only very marginally significant in all three cases. The coefficients can be

interpreted as the average change in the rating score that would result

from a unit change in the variable. So, for example, a rise in per capita

income of $1,000 will on average increase the rating by 1.0 units according

to Moody’s and 1.5 units according to Standard & Poor’s. The development

dummy suggests that, on average, a developed country will have a rating

three notches higher than an otherwise identical developing country. And

everything else equal, a country that has defaulted in the past will have

a rating two notches lower than one that has always kept its obligation.

By and large, the ratings agencies appear to place similar weights on

each of the variables, as evidenced by the similar coefficients and signif-

icances across columns (4) and (5) of table 4.2. This is formally tested in

column (6) of the table, where the dependent variable is the difference be-

tween Moody’s and Standard and Poor’s ratings. Only three variables are

statistically significantly differently weighted by the two agencies. Stan-

dard & Poor’s places higher weights on income and default history, while

Moody’s places more emphasis on external debt.

4.14.4 The relationship between ratings and yields

In this section of the paper, Cantor and Packer try to determine whether

ratings have any additional information useful for modelling the cross-

sectional variability of sovereign yield spreads over and above that con-

tained in publicly available macroeconomic data. The dependent variable
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Table 4.3 Do ratings add to public information?

Dependent variable: ln (yield spread)

Variable Expected sign (1) (2) (3)

Intercept ? 2.105∗∗∗ 0.466 0.074
(16.148) (0.345) (0.071)

Average rating − −0.221∗∗∗ −0.218∗∗∗

(−19.175) (−4.276)

Per capita − −0.144 0.226
income (−0.927) (1.523)

GDP growth − −0.004 0.029
(−0.142) (1.227)

Inflation + 0.108 −0.004
(1.393) (−0.068)

Fiscal balance − −0.037 −0.02
(−1.557) (−1.045)

External balance − −0.038 −0.023
(−1.29) (−1.008)

External debt + 0.003∗∗∗ 0.000
(2.651) (0.095)

Development − −0.723∗∗∗ −0.38
dummy (−2.059) (−1.341)

Default dummy + 0.612∗∗∗ 0.085
(2.577) (0.385)

Adjusted R2 0.919 0.857 0.914

Notes: t -ratios in parentheses; ∗, ∗∗and ∗∗∗ indicate significance at the 10%, 5% and 1%

levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

is now the log of the yield spread, i.e.

ln(Yield on the sovereign bond -- Yield on a US Treasury Bond)

One may argue that such a measure of the spread is imprecise, for the

true credit spread should be defined by the entire credit quality curve

rather than by just two points on it. However, leaving this issue aside, the

results are presented in table 4.3.

Three regressions are presented in table 4.3, denoted specifications (1),

(2) and (3). The first of these is a regression of the ln(spread) on only a

constant and the average rating (column (1)), and this shows that ratings

have a highly significant inverse impact on the spread. Specification (2)
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is a regression of the ln(spread) on the macroeconomic variables used in

the previous analysis. The expected signs are given (as determined by this

author) in column (2). As can be seen, all coefficients have their expected

signs, although now only the coefficients belonging to the external debt

and the two dummy variables are statistically significant. Specification

(3) is a regression on both the average rating and the macroeconomic

variables. When the rating is included with the macroeconomic factors,

none of the latter is any longer significant -- only the rating coefficient

is statistically significantly different from zero. This message is also por-

trayed by the adjusted R2 values, which are highest for the regression

containing only the rating, and slightly lower for the regression contain-

ing the macroeconomic variables and the rating. One may also observe

that, under specification (3), the coefficients on the per capita income,

GDP growth and inflation variables now have the wrong sign. This is, in

fact, never really an issue, for if a coefficient is not statistically significant,

it is indistinguishable from zero in the context of hypothesis testing, and

therefore it does not matter whether it is actually insignificant and pos-

itive or insignificant and negative. Only coefficients that are both of the

wrong sign and statistically significant imply that there is a problem with

the regression.

It would thus be concluded from this part of the paper that there is no

more incremental information in the publicly available macroeconomic

variables that is useful for predicting the yield spread than that embodied

in the rating. The information contained in the ratings encompasses that

contained in the macroeconomic variables.

4.14.5 What determines how the market reacts to ratings announcements?

Cantor and Packer also consider whether it is possible to build a model

to predict how the market will react to ratings announcements, in terms

of the resulting change in the yield spread. The dependent variable for

this set of regressions is now the change in the log of the relative spread,

i.e. log[(yield -- treasury yield)/treasury yield], over a two-day period at the

time of the announcement. The sample employed for estimation comprises

every announcement of a ratings change that occurred between 1987 and

1994; 79 such announcements were made, spread over 18 countries. Of

these, 39 were actual ratings changes by one or more of the agencies,

and 40 were listed as likely in the near future to experience a regrad-

ing. Moody’s calls this a ‘watchlist’, while Standard and Poor’s term it

their ‘outlook’ list. The explanatory variables are mainly dummy variables

for:
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● whether the announcement was positive -- i.e. an upgrade

● whether there was an actual ratings change or just listing for probable

regrading

● whether the bond was speculative grade or investment grade

● whether there had been another ratings announcement in the previous

60 days

● the ratings gap between the announcing and the other agency.

The following cardinal variable was also employed:

● the change in the spread over the previous 60 days.

The results are presented in table 4.4, but in this text, only the final

specification (numbered 5 in Cantor and Packer’s exhibit 11) containing

all of the variables described above is included.

As can be seen from table 4.4, the models appear to do a relatively poor

job of explaining how the market will react to ratings announcements.

The adjusted R2 value is only 12%, and this is the highest of the five

Table 4.4 What determines reactions to ratings announcements?

Dependent variable: log relative spread

Independent variable Coefficient (t-ratio)

Intercept −0.02
(−1.4)

Positive announcements 0.01
(0.34)

Ratings changes −0.01
(−0.37)

Moody’s announcements 0.02
(1.51)

Speculative grade 0.03∗∗

(2.33)

Change in relative spreads from day −60 to day −1 −0.06
(−1.1)

Rating gap 0.03∗

(1.7)

Other rating announcements from day −60 to day −1 0.05∗∗

(2.15)

Adjusted R2 0.12

Note: ∗ and ∗∗ denote significance at the 10% and 5% levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.
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specifications tested by the authors. Further, only two variables are signif-

icant and one marginally significant of the seven employed in the model.

It can therefore be stated that yield changes are significantly higher fol-

lowing a ratings announcement for speculative than investment grade

bonds, and that ratings changes have a bigger impact on yield spreads if

there is an agreement between the ratings agencies at the time the an-

nouncement is made. Further, yields change significantly more if there

has been a previous announcement in the past 60 days than if not. On

the other hand, neither whether the announcement is an upgrade or

downgrade, nor whether it is an actual ratings change or a name on the

watchlist, nor whether the announcement is made by Moody’s or Stan-

dard & Poor’s, nor the amount by which the relative spread has already

changed over the past 60 days, has any significant impact on how the

market reacts to ratings announcements.

4.14.6 Conclusions

● To summarise, six factors appear to play a big role in determining

sovereign credit ratings -- incomes, GDP growth, inflation, external debt,

industrialised or not and default history

● The ratings provide more information on yields than all of the macro-

economic factors put together

● One cannot determine with any degree of confidence what factors de-

termine how the markets will react to ratings announcements.

Key concepts
The key terms to be able to define and explain from this chapter are
● homoscedasticity ● heteroscedasticity

● autocorrelation ● dynamic model

● equilibrium solution ● robust standard errors

● skewness ● kurtosis

● outlier ● functional form

● multicollinearity ● omitted variable

● irrelevant variable ● parameter stability

● recursive least squares ● general-to-specific approach

Review questions

1. Are assumptions made concerning the unobservable error terms (ut ) or

about their sample counterparts, the estimated residuals (ût )? Explain

your answer.
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2. What pattern(s) would one like to see in a residual plot and why?

3. A researcher estimates the following model for stock market returns,

but thinks that there may be a problem with it. By calculating the

t -ratios, and considering their significance and by examining the value

of R2 or otherwise, suggest what the problem might be.

ŷt = 0.638 + 0.402x2t − 0.891x3t R2 = 0.96, R̄2 = 0.89

(4.75)(0.436) (0.291) (0.763)

How might you go about solving the perceived problem?

4. (a) State in algebraic notation and explain the assumption about the

CLRM’s disturbances that is referred to by the term

‘homoscedasticity’.

(b) What would the consequence be for a regression model if the

errors were not homoscedastic?

(c) How might you proceed if you found that (b) were actually the case?

5. (a) What do you understand by the term ‘autocorrelation’?

(b) An econometrician suspects that the residuals of her model might

be autocorrelated. Explain the steps involved in testing this theory

using the Durbin–Watson (DW) test.

(c) The econometrician follows your guidance (!!!) in part (b) and

calculates a value for the Durbin–Watson statistic of 0.95. The

regression has 60 quarterly observations and three explanatory

variables (plus a constant term). Perform the test. What is your

conclusion?

(d) In order to allow for autocorrelation, the econometrician decides to

use a model in first differences with a constant

�yt = β1 + β2�x2t + β3�x3t + β4�x4t + ut (4.76)

By attempting to calculate the long-run solution to this model,

explain what might be a problem with estimating models entirely in

first differences.

(e) The econometrician finally settles on a model with both first

differences and lagged levels terms of the variables

�yt = β1 + β2�x2t + β3�x3t + β4�x4t + β5x2t−1

+ β6x3t−1 + β7x4t−1 + vt (4.77)

Can the Durbin–Watson test still validly be used in this case?

6. Calculate the long-run static equilibrium solution to the following

dynamic econometric model

�yt = β1 + β2�x2t + β3�x3t + β4 yt−1 + β5x2t−1

+ β6x3t−1 + β7x3t−4 + ut (4.78)
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7. What might Ramsey’s RESET test be used for? What could be done if it

were found that the RESET test has been failed?

8. (a) Why is it necessary to assume that the disturbances of a

regression model are normally distributed?

(b) In a practical econometric modelling situation, how might the

problem that the residuals are not normally distributed be

addressed?

9. (a) Explain the term ‘parameter structural stability’?

(b) A financial econometrician thinks that the stock market crash of

October 1987 fundamentally changed the risk–return relationship

given by the CAPM equation. He decides to test this hypothesis

using a Chow test. The model is estimated using monthly data from

January 1980–December 1995, and then two separate regressions

are run for the sub-periods corresponding to data before and after

the crash. The model is

rt = α + β Rmt + ut (4.79)

so that the excess return on a security at time t is regressed upon

the excess return on a proxy for the market portfolio at time t . The

results for the three models estimated for shares in British Airways

(BA) are as follows:

1981M1–1995M12

rt = 0.0215 + 1.491 rmt RSS = 0.189 T = 180 (4.80)

1981M1–1987M10

rt = 0.0163 + 1.308 rmt RSS = 0.079 T = 82 (4.81)

1987M11–1995M12

rt = 0.0360 + 1.613 rmt RSS = 0.082 T = 98 (4.82)

(c) What are the null and alternative hypotheses that are being tested

here, in terms of α and β?

(d) Perform the test. What is your conclusion?

10. For the same model as above, and given the following results, do a

forward and backward predictive failure test:

1981M1–1995M12

rt = 0.0215 + 1.491 rmt RSS = 0.189 T = 180 (4.83)

1981M1–1994M12

rt = 0.0212 + 1.478 rmt RSS = 0.148 T = 168 (4.84)
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1982M1–1995M12

rt = 0.0217 + 1.523 rmt RSS = 0.182 T = 168 (4.85)

What is your conclusion?

11. Why is it desirable to remove insignificant variables from a regression?

12. Explain why it is not possible to include an outlier dummy variable in a

regression model when you are conducting a Chow test for parameter

stability. Will the same problem arise if you were to conduct a predictive

failure test? Why or why not?

13. Re-open the ‘macro.wf1’ and apply the stepwise procedure including all

of the explanatory variables as listed above, i.e. ersandp dprod dcredit

dinflation dmoney dspread rterm with a strict 5% threshold criterion for

inclusion in the model. Then examine the resulting model both

financially and statistically by investigating the signs, sizes and

significances of the parameter estimates and by conducting all of the

diagnostic tests for model adequacy.


